

The <u>Digital</u> Reflector

PUBLISHED BY THE BOSTON SECTION OF THE INSTITUTE OF ELECTRICAL AND ELECTRONICS ENGINEERS, 8,000 MEMBERS STRONG!

http://www.ieeeboston.org

Free Technical Meetings

Paper Reviewed Conferences!

State-of -the -Art Professional Development Courses

TABLE OF CONTENTS

Spring Social and Awards Reception / Boston Section Social Media Links	<u>Page 3</u>
March Editorial, "Old People", Karen Panetta, Reflector Editor	<u>Page 4</u>
Call for Course Speakers/Organizers / Local Conference Listing	<u>Page 6</u>
Entrepreneurs' Network	<u>Page 7</u>
Reliability Society	<u>Page 8</u>
Photonics Society	<u>Page 10</u>
Entrepreneurs' Network	<u>Page 11</u>
Computer Society, and Society for Social Implications Of Technology	<u>Page 12</u>
Power and Energy Society	<u>Page 13</u>
Life Members and Aerospace and Electronic Systems Society	<u>Page 14</u>
Consultants' Network	<u>Page 16</u>
Data Interoperability Using JSON and JSON Schema	<u>Page 17</u>
IEEE Boston Section Awards - Call for Nominations	<u>Page 18</u>
Making You a Leader - Fast Track!	<u>Page 20</u>
Defining and Writing Business Requirements	<u>Page 22</u>
Basics of Software Defined Networks	<u>Page 23</u>
Introduction to Embedded Linux	<u>Page 25</u>
Call for Course Speakers and Organizers	<u>Page 27</u>
Optical Sensors Workshop	<u>Page 28</u>
2016 IEEE High Performance Extreme Computing Conference (HPEC), Call for Papers	<u>Page 29</u>
Modern Wireless System Design: From Circuits to Web-based Apps	<u>Page 30</u>
QA Testing in the Digital World	<u>Page 32</u>
Introduction to Network Function Virtualization (NFV)	<u>Page 33</u>
Advanced Embedded Linux Optimization	<u>Page 35</u>
Flexible Electronics - Packaging Design, and Materials Analysis for Aerospace, Military, Medical and High-end Consumer Products	<u>Page 37</u>
Phased-Array and Adaptive-Array Fundamentals and their Recent Advances	<u>Page 38</u>
Software Development for Medical Device Manufacturers	<u>Page 43</u>
Antennas and Propagation for Wireless Communications	<u>Page 45</u>
2016 IEEE International Symposium on Technologies for Homeland Security	<u>Page 48</u>

IEEE Boston Spring Social and Awards

The 2016 IEEE Boston Section Spring Social and Awards Reception will be held on **Sunday**, **June 12**, **2016 from 1 - 4PM at the Crowne Plaza Hotel**, **15 Middlsex Canal Park Road**, **Woburn**, **MA**.

At this reception, we will recognize and/or present awards of all IEEE levels from Fellows to section awards to all Boston Section recipients. Members of the section and their families and friends are invited to attend.

Look for more details on the Boston Section website (ieeeboston.org) and in upcoming issues of the paper and digital Reflector (please sign up for the digital Reflector if you do not currently allow electronic communications from the section) as this will be our main publicity outlet after the May 2016 paper Reflector issue.

You can sign up at this link, http://ieeeboston.org/notifications-of-next-digital-reflector/

(NOTE: IF YOU ARE A MEMBER OF THE BOSTON SECTION AND YOU ARE ALREADY RECEIVING THE DIGITIAL REFLECTOR, YOU DO NOT NEED TO SIGN UP AS IT WILL BE AUTOMATICALLY SENT TO YOU. NON-MEMBERS CAN SIGN UP AS WELL USING THE SAME LINK ABOVE!

IEEE Boston Section Social Media Links:

Twitter: https://twitter.com/ieeeboston

Facebook: https://www.facebook.com/IEEEBoston

YouTube: https://www.youtube.com/user/IEEEBostonSection

Google+: https://plus.google.com/107894868975229024384/

LinkedIn: https://www.linkedin.com/groups/IEEE-Boston-Section-3763694/about

Old People

Karen Panetta, Reflector, Editor

people and the chorus chants "don't want any short expect retirements in the department soon," bepeople around here." Some of the character traits depicted in the song imply short people are liars and are out to get you. If the song were released today, the artist would most likely have to go into hiding to avoid death threats.

The artist's intent was to choose a random physical characteristic of people and show how ridiculous it was to associate personality traits that have absolutely no correlation to a person's height. His song most likely would have evoked the same reaction if want any old people around here", I want to send he had replaced the words "short people" with "blue them off to an IEEE Life Member meeting. The Life eyed people" or "people who open their eggs at the small end." The point was, he was trying to say that older people have been stereotyped as, and more attributing character traits to people based on some random discriminating factor was stupid.

I bring this up because we keep hearing about the shortage of qualified engineers in the U.S. and yet, there are thousands of well-qualified engineers out there and out of work. What's wrong with these unemployed engineers that no one wants to hire them you ask? They are old.

Now, what exactly is old? That depends on who you ask. For most of the situations I have been observing lately, old means someone older than the person singing the tune "don't want any old people Some of my greatest mentors are now Life memaround here." So let's say the the person singing is bers. Their candid advice, wisdom and encourage-

1977, Artist Ran- 44 years old, then by that standard, 50 is considdy Newman released ered old and 60 means you should just climb in the a song called "Short box and close the lid. To these small minded boobs, People." The lyrics go a person over 60 is elderly and useless. You may on a litary of negative have met a few of these "old people lives don't matcharacter traits of short ter" types in meetings using statements like, "we lieving they are being tactful in pushing the oldest group members out the door right, while the "old" people are sitting in the same meeting.

> After all, these experienced older individuals are known for their ability to point out naïve and stupid decisions that will make the project fail. Now, who wants someone around like that? Quick! Find some icebergs and let's float them all out to sea!

> Every time I encounter a person singing, "Don't members are not the decrepit walking dead that importantly, they are brilliant. Many of the Life Members are successful entrepreneurs and many are still working because they really are not "old." They do not sit around in their meetings discussing the status of their hemorrhoids. They discuss complex global challenges facing humanity and yes, they are not shy about voicing their opinions, proposing solutions and identifying promising technologies of the future. Hearing them discuss the history of technology and how we got to where we are today, is a bonus. They invite promising young engineers to give talks and are eager to help students flourish.

ment has been the best value I received from my IEEE membership.

I do amaze my students with tales of the first electrified railway, the first wireless voice transmission, and my dinners with famous engineers and scientists. How many people can say they got to brainstorm designing new signal processing algorithms to dampen background noise in large ballrooms with the late Ray Dolby?

they understand what a wonderful resource our Life learn more! members are.

It will be many, many, many more decades before I am eligible for Life Membership, but that's okay. To my 20-year-old students, anyone over the age of 26 is considered old, so by their standard, I am eligible to be put on an iceberg and floated out to sea.

But I will let you in on a secret. All the older engineers floating together on that iceberg are really prototyping new propulsion systems and testing novel wave power renewable energy sources!

In sports training, we are told to train with someone A person is eligible to become a life fellow after who is a stronger player than you are to help im-turning 65 years young. Becoming an IEEE Life prove your game. Well, I believe it is the same for Member is based on the number of years a person your brain. I find "brain training" with Life Members has been an IEEE member plus her/his age. If that to be the equivalent. And all it takes is that people number is greater than or equal to 100, you can stop singing "don't want any old people" and put be a life fellow and not pay any more IEEE dues. on a miracle ear and start to listen. Only then, will Visit ieeeboston.org/life-members-affinity-group/ to

IEEE Boston Section Social Media Links:

Twitter: https://twitter.com/ieeeboston

Facebook: https://www.facebook.com/IEEEBoston

YouTube: https://www.youtube.com/user/IEEEBostonSection

Google+: https://plus.google.com/107894868975229024384/

LinkedIn: https://www.linkedin.com/groups/IEEE-Boston-Section-3763694/about

Locally held IEEE Conferences

Save the travel costs and participate in these IEEE conferences held locally.

2016 IEEE High Performance Extreme Computing Conference September 13 - 15 2016 www.ieee-hpec.org (Abstract submission deadline is May 16, 2016)

2016 IEEE Symposium on Technologies for Homeland Security May 10 -12 2016 www.ieee-hst.org

Hotel and Conference Registration is Now Open!!!

2016 IEEE International Symposium on Phased Array Systems & Technology October, 18 - 21 2016 www.array2016.org

As always, the views expressed in our editorials are those of the author and not necessarily those of the IEEE Boston

Letters to the editor can be sent to, "sec.boston@ieee.org" IEEE prohibits discrimination, harassment and bullying.

For more information visit http://www.ieee.org/web/aboutus/whatis/policies/p9-26.html

Call for Course Speakers/Organizers

IEEE's core purpose is to foster technological innovation and excellence for the benefit of humanity. The IEEE Boston Section, its dedicated volunteers, and over 8,500 members are committed to fulfilling this core purpose to the local technology community through chapter meetings, conferences, continuing education short courses, and professional and educational activities.

Twice each year a committee of local IEEE volunteers
meet to consider course topics for its continuing
education program. This committee is comprised of
practicing engineers in various technical disciplines.
In an effort to expand these course topics for our
members and the local technical community at large,
the committee is publicizing this CALL FOR COURSE
SPEAKERS AND ORGANIZERS.
•

The Boston Section is one of the largest and most technically divers sections of the IEEE. We have over 20 active chapters and affinity groups.

if you have an expertise that you feel might be of interest to our members, please submit that to our online course proposal form on the section's website (www.ieeeboston.org) and click on the course proposal link (direct course proposal form link is

http://ieeeboston.org/course-proposals/ . Alternatively, you may contact the IEEE Boston Section office at sec. boston@ieee.org or 781 245 5405.

- Honoraria can be considered for course lecturers
- Applications oriented, practical focused courses are best (all courses should help attendees expand their knowledge based and help them do their job better after completing a course
- Courses should be no more than 2 full days, or 18 hours for a multi-evening course
- Your course will be publicized to over 10,000 local engineers
- You will be providing a valuable service to your profession
- Previous lecturers include: Dr. Eli Brookner, Dr. Steven Best, Colin Brench, to name a few.

Entrepreneur's Network – 6:30PM, Tuesday, 1 March

Succeeding with the Lean Startup Model

PRE-MEETING DINNER at 5:15 PM (sharp) at Bertucci's, Waltham.

Meeting Location – Constant Contact, 1601 Trapelo Road, 1st Floor, InnoLoft, Waltham, MA

Since the lean start-up movement began in 2008, there has been an explosion of interest and adoption of the methodology. Recent economic events, of information have highlighted the importance of to provide domain knowledge and technical the lean start-up principles, how it can streamline a vices. start-up's work-flow and quantify results.

Learn how Lean Startup principles can help accel- zation and domain knowledge skills to manufacturerate your business from entrepreneurs who put it ing, supply chain, logistics and retail operations in to use everyday. Want to meet and network with large corporations. As a domain leader, he man-Lean Startup entrepreneurs and venture capital- ages teams spread across the USA, Latin America, ists? Are you eager to find out what works and what Europe and India for delivering business and IT doesn't in the Lean Startup world? Then join us on projects. He focuses on solving logistics operations March 1st.

Moderator: Stacey Arbetter, http:/muttmaps.com

portation industry and, previously, the and business schools.

largest independent exporter of automobiles in the U.S. Excels at identifying market opportunities. She Karthik was granted a Young Scientist Award by terprise. Stacey latest startup is Mutt Maps. Mutt ber of American Society of Engineering Education owners that delivers community-reviewed, geolo- tronics Engineers (IEEE). He is a postdoctoral felcated, pet-friendly places, services and products.

tor, Cognizant Technology Solutions, http://www.cognizant.com/

Dr. Karthik Ganesan is the American Program Director for Business Consulting and Enterprise IT at Cognizant Technology Solutions, a NASDAQ listed, Fortune 500 US corporation. He manages a multimillion dollar portfolio of services for corpo-

technological change and the rapid dissemination rate customers, leading globally distributed teams

Dr. Ganesan's experience spans applying optimiand supply chain management and manufacturing problems faced by his customers. He is responsi-Co- ble for leading the business center in implementing founder & CEO of Mutt Maps, Inc., full-life cycle solutions to his customers within competitive, time constrained contractual terms. His responsibility extends to internal and external team Stacey is a Serial Entrepreneur of management, customer satisfaction and securing several successful startups including repeat business for his group. Prior to taking this the leading supplier in North America industry position, he spent over a decade in graduof an industrial product for the trans- ate level teaching and research in both engineering

is motivated by new challenges where complex, in- the Department of Science and Technology of the novative problem-solving skills and business strat- Government of India. He was elected a Fellow of egy can bring direct and immediate value to an en- the Institution of Engineers (FIE), India, is a mem-Maps is a web app developing a community for pet (ASEE) and of the Institute of Electrical and Eleclow from The Ohio State University, Columbus. He holds Graduate and Doctoral degrees in Industrial Organizer: Dr. Karthik Ganesan, Program Direc- Engineering and Management from the Indian Institute of Science and an undergraduate degree in 128 / 95 at Exit 28B. Mechanical Engineering from Anna University.

Pre-meeting Dinner at 5:15 PM (sharp) at Ber-Website at (http://www.boston-enet.org)

Directions: Constant Contact is adjacent to RT ter at the door.

http://www.constantcontact.com/about-See: constant-contact/office-location-waltham.jsp

tucci's, Waltham, (Exit 27B, Route 128). E-Min- Reservations: ENET Constant Contact meetute Presentations will be given at the start of ings are free to ENET members and \$20 for the meeting. These very short presentations non-members. No reservations are needed for enable young startup entrepreneurs to gain ex- the premeeting dinner. To expedite sign-in for perience in presenting their summary business the meeting, we ask that everyone -- members plans to expert panels and audiences. Check as well as non-members -- pre-register for the for Updates at: Boston Entrepreneurs' Network meeting online. Pre-registration is available until midnight the day before the meeting. If you cannot pre-register, you are welcome to regis-

Reliability Society - 6:00 PM, Wednesday, 9 March

Reliability Physics based On Dynamic causal nEtworks (RAPSODE)

Dr Simone Bortolami, Draper Laboratory

formance and/or reliability requirements. Nevertheless, they remain vulnerable to catastrophic events dividually nonfatal events and/or

such systems does not commonly involve catastro- which are different for different environments and phe, but rather an unexpected degradation of per- mission goals. RAPSODE uses causal networks formance affecting the cost of maintenance and/or to identify all possible failure/degradation states. ownership. Thus, reliability does not necessarily At the design stage, RAPSODE can help isolate, mean loss of the use of a system, but also a costly among all critical paths, the ones with the highdecay of performance below a set threshold.

rosion, etc. More recently, new simulation-based powerful DfR solutions for complex systems.

Complex one-of-a-kind systems approaches have been used to address mission reare usually built to stringent per- liability by evaluating the impact of single failures to the key outputs of the system during its operation.

RAPSODE is a proposed approach that uses bethat are often a combination of in- havioral models of the system's dynamics and embedded PoF models to evaluate the outcome of all processes. Also, the reliability of combinations of failure and/or degradation sources, est influence on mission reliability, thereby driving targeted laboratory tests and fault-tolerant design. For many years to date, Physics of Failure (PoF) RAPSODE can also help analyze complex syshas been the practice in several fields of engineer- tems with a human-in-the-loop. Attendees will find ing primarily involved with their design for life ex- this presentation useful in understanding the novel pectancy, e.g., fracture mechanics, fatigue, cor- methodology adopted by RAPSODE in delivering

on instrumentation and algorithms for inertial navi- able. gation, guidance, and control. From 2009 to 2012. he was director and head of three rotorcraft research centers for AgustaWestland, a multinational largest helicopter manufacturer in the world.

From 2005 to 2009, he was a principal at Draper, focused on dynamics and control of spacecraft, reliability, and gravity gradiometry. From 1997 to 2005, he was senior scientist on the faculty of Brandeis University, Waltham, MA, focused on computational human neurophysiology and human space orientation. From 1994 to 1997, he was a fellow at the Harvard Medical School and an adjunct assistant professor at the Massachusetts General Hospital 02420. focused on neurophysiology and biomechanics. From 1992 to 1994, he carried out his Ph.D. research at the Radio and Geo-astronomy division of the Harvard-Smithsonian Center for Astrophysics, Cambridge, MA in and Spacecraft Dynamics and Control.

Dr. Bortolami also holds a Master of Science in Mechanical Engineering from the University of Padua, the author of 40+ international publications on both human neurophysiology and spacecraft dynam- valid driver's license to present to security. ics and control, which have been referenced 300+ times internationally. He has been a reviewer for Web map link: several international journals in human physiology https://www.ll.mit.edu/about/mapForbesRoad.html as well as subject matter expert for government agencies in aerospace engineering.

Simone Bortolami, Ph.D. has extensive experience **This meeting will be held on Wednesday, March** in research and development with focus on disrup- 9, 2016 at MIT Lincoln Laboratory, Lexington, tive solutions. Throughout his career, he has gen- MA (Forbes Road location). It will begin with erated and executed projects for a variety of indus- personal networking at 5:30 PM. The presentatry and government applications. Presently, he is a tion will follow at 6:00 PM. Refreshments, comlead scientist at Draper in Cambridge, MA, focusing pliments of the Reliability Chapter, will be avail-

You do not need to belong to IEEE to attend this event; however we welcome your consideration conglomerate with 13K+ employees and the third of IEEE memberships as career enhancing technical affiliations. We request that you register to attend by Friday, March 4, so we can plan the refreshments.

> You can register on-line by visiting the Reliability Chapter website at http://www.ieee.org/bostonrel

> MIT Lincoln Laboratory's Forbes Road Facility is located at 3 Forbes Road in Lexington, MA

> **Driving Directions to MIT Lincoln Laboratory** (Forbes Road Facility): (from Interstate-95 / **Route 128)**

Take Route 128 / I-95 to Exit 30B, Route 2A westbound. At the first traffic light, turn left onto Forbes Road. Go to the end of the street. At the traffic circle, turn right. Go halfway around the Italy, 1990, and he is a certified PE in Mechanical, traffic circle and turn into the parking lot for Industrial, and Environmental Engineering. He is MIT Lincoln Laboratory. The main entrance is straight ahead, shared with "agenus". Have a

Photonics Society – 6:30PM, Thursday, 10 March

Ultrafast Laser and Adaptive Optical Devices

Professor Juliet T. Gopinath, Department of Electrical, Computer and Energy Engineering, University of Colorado at Boulder

ests in ultrafast diode lasers, nonlinear chalcogenide devices, and electrowetting adaptive optics. Specifically, I will describe a new application of a stochastic parallel synthesis system.

Additionally, I will report on a new chalcogenide materials platform for integrated nonlinear waveguide devices for the mid-infrared. Finally, I will discuss electrowetting adaptive optical devices for imaging, wavefront correction, and communications.

Juliet Gopinath holds a B.S. degree in electrical engineering from the University of Minnesota and S.M. and Ph.D. degrees from MIT in electrical engineering.

From 2005 to 2009, she worked as a member of technical staff at MIT Lincoln Laboratory. Her work included wavelength-beam combining of eyesafe diode arrays, cryogenic Yb:YAG lasers/amplifiers, modelocked semiconductor optical waveguide lasers (SCOWLs), high power eyesafe laser sources, and Raman spectroscopy. She is now an assistant professor at the University of Colorado-Boulder in the Electrical, Computer, and Energy Engineering department. Her research interests include inte- pre-register at, grated and nonlinear optics, ultrafast lasers, semi- http://www.ieeeboston.org/Register/.

I will discuss my research inter- conductor lasers, wavelength beam combining, spectroscopy, mid-infrared sources, and adaptive optics. Dr. Gopinath is the recipient of the National Science Foundation Graduate Fellowship (1998-2001) and an R&D 100 Award (2012). She has authored and co-authored 33 journal papers and over gradient descent algorithm to fast 42 conference proceedings and is an associate ediactive phase control in a Fourier tor for the IEEE Photonics Society Journal.

> This meeting begins at 6:30 PM Thursday, February March 10th, MA, 02420. The meeting is free and open to the public. All are welcome. Prior to the seminar there will be social time and networking from 6:30 - 7:00PM. Dinner will also be provided. The seminar will begin at 7:00PM. For more information contact Jade Wang, Boston IEEE Photonics Society Chapter chair at jpwang@ll.mit.edu, or visit the Boston IEEE Photonics Society website at www.bostonphotonics.org.

> **Directions to Forbes Rd Lincoln Laboratory:** (from interstate I-95/Route 128) Take Exit 30B onto Marrett Rd in Lexington - Merge into left lane. Make the first Left onto Forbes Rd., Proceed straight through the small rotary and enter the parking lot. The entrance is on your right.

> To assist us in planning this meeting, please

Entrepreneur's Network Cambridge Meeting - 6:00PM, Tuesday, 15 March

So you want to start a life sciences company? Pointers to succeed

Meeting location – Microsoft Technology Center, One Cambridge Center (Kendall Square, next to Marriott Hotel), Cambridge, MA.

There are lots of ways to fund and launch a life sciences start-up. The work is always interesting, often with the potential to change the lives of patients suffering from an underserved medical condition. Yes, there are lots of ways to get the job done, but none of them are easy.

ENET has assembled a distinguished panel of experienced entrepreneurs who have accepted the life sciences start-up challenge, each having taken a very different path. Join us to hear their stories and engage them in discussion.

For more information and updates, visit www.boston-enet.org

Moderator: Dr. Roger Frechette is the Co-Founder

and Principal of New England PharmAssociates, a consultancy offering on-demand executive and business advisory services to life sciences enterprises.

terprises.

He is also the US East Coast Ambassador for Medicon Valley Alli-

ance, a life sciences cluster organization based in Copenhagen. Previously, he was a Co-Founder of Frontiera Therapeutics, a startup developing therapeutics for vascular leaks. He is a volunteer adviser and mentor with several Boston area biotech incubators and startup mentoring programs. Previously, Dr. Frechette was Co-Founder of MaxThera, an antibacterial drug discovery company. MaxThera was sold in 2010 to Biota Holdings Limited, a Melbourne Australia anti-infectives company.

Prior to starting MaxThera, Dr. Frechette was a drug discovery and life-sciences consultant following his role as Project Director at Paratek Pharmaceuticals (Boston). At Paratek he led the team that discovered PTK0796 (currently in Phase III clinical trials) with strategic partner Glaxo-Wellcome, and the pre-clinical development program that was carried out with a multinational team of consultants and contractors.

Previously, he was Associate Director of Chemistry at RiboGene (Hayward, CA), where he built the chemistry department and managed two drug discovery programs in collaboration with strategic partner Dainippon Pharmaceuticals. He began his career as a medicinal chemist at the R.W. Johnson Pharmaceutical Research Institute (J&J, Raritan, NJ). Dr. Frechette was a Post-Doctoral Fellow at Yale University, earned his PhD in Organic Chemistry from Wesleyan University and his BA in Chemistry from College of the Holy Cross.

Organizer: Andrew Snyder, Ph.D. is a Research Scientist at the Broad Institute of MIT and Harvard. In his current role, he focuses on finding novel therapeutics for cardiovascular disease in collaboration with Bayer Healthcare. Prior to working at the Broad,

Andy worked at Targanox, Inc, a biotech focused on discovering targeted therapeutics to offset the effects of reactive oxygen species. As part of the initial startup team, Andy was responsible for setting up the biology laboratory, co-developing the proteomics platform and conducting screening assays to identifying targets and inhibitors.

Andy completed his post-doctoral training in cancer **Note: There is also a direct Microsoft entrance** biology at the Wistar Institute in Philadelphia, PA across from the rotary at the confluence of Main and was a NRSA NIH/NCI individual award recipi- Street and Broadway. See also: ent. Andy holds a Ph.D. (Molecular and Cell Biology) and a M.S. degree (Environmental Molecular boston directions.aspx Biology) from the University of Maryland at Baltimore and a B.S. in microbiology from the University teering with ENET in 2014.

bridge Center, Cambridge, MA. 02142 Phone: East from RT 128 Exit 29A directly to the Ale-(781) 487-6400 The One Cambridge Center wife MBTA garage. Park at the Alewife Garage GENERAL ENTRANCE is on 255 Main Street, (\$7.00) on the MBTA subway Red Line. Take the Post Office. Exit Kendall Square T Station to Main Street. Once you exit the station, head down the Marriott side of Main Street going in the street from the station. the direction of Boston/the Longfellow Bridge. The One Cambridge Center entrance is located Admission: General admission is \$10. Free to next to the Boston Properties entrance. Enter ENET members. Free Pizza and soft drinks will through the glass revolving door and proceed be served. Advanced registration is requested to the Microsoft facilities on the second floor.

http://www.microsoft.com/en-us/mtc/locations/

Note: There is also a direct Microsoft entrance of Maryland at College Park. Andy began volun- across from the rotary at the confluence of Main Street and Broadway.

Where: Microsoft Technology Center, One Cam- PUBLIC TRANSPORTATION: Travel Mass RT 2 Cambridge, across from the Kendall Square inbound train (the only one available there) for 15 minutes to Kendall / MIT. The entrance to the Microsoft Technology Center is directly across

Computer and Social Implications of Technology Societies and GBC/ACM – 7:00PM, Wednesday, 16 March

Auditability and Verification of Elections

Prof. Ronald L. Rivest, MIT

bridge)

have credible results---otherwise phy help?

Broad Institute Auditorium (corner Voting systems purchased with funds allocated afof Vassar & Main Streets, Cam- ter the 2000 U.S. presidential election fiasco are rapidly becoming obsolete.

Democracy requires that elections How can good definitions, statistics, and cryptogra-

the winner lacks a political man- We present the notion of software independence, date and the supporters of losing candidates re- describe several methods for effective auditing of act with anything from protests to revolution. Yet paper ballots, and give an overview of "end-to-(U.S.) elections have become larger and increas- end" cryptographic voting systems that allow voters ingly complex, and politics seems more polarized. to confirm that their votes were counted exactly as Software-based voting systems inspire little trust. intended, without violating voter privacy or enabling

ment of the prospects for "voting over the internet".

Professor Rivest is an Institute Professor at MIT, a visory Board for the Electronic Privacy Information member of its Department of Electrical Engineering and Computer Science, a member of MIT's Computer Science and Artificial Intelligence Laboratory (CSAIL), a member of that lab's Theory of Computation Group and a leader of its Cryptography and Information Security Group.

He received a B.A. in Mathematics from Yale University in 1969, and a Ph.D. in Computer Science from Stanford University in 1974. His research interests include cryptography, computer and network security, algorithms, and voting system security.

Rivest is a co-inventor of the RSA public-key cryptosystem, has extensive experience in cryptographic design and cryptanalysis. He is also a founder of RSA Data Security and of Verisign. Together with Adi Shamir and Len Adleman, he has received the 2002 ACM Turing Award and the 2009 NEC C&C Award. He is also well-known as a co-author of the text, "Introduction to Algorithms" (with Cormen, Leiseron, and Stein). He is a member of the National Academy of Engineering and the National Academy of Sciences, and is a Fellow of the Association for

vote-selling. We close with a (pessimistic) assess- Computing Machinery, the International Association for Cryptographic Research, and the American Academy of Arts and Sciences. He is on the Ad-Center and on the board of Verified Voting.

> This joint meeting of the Boston Chapters of the IEEE Computer and Social Implications of Technology Societies and the GBC/ACM will be held in the main auditorium on the 1st floor of the Broad Institute, corner of Main and Vassar Streets in Cambridge.

> http://whereis.mit.edu/map-jpg?zoom=level4;c enterx=711791;centery=495971">

> map of the MIT campus. Up-to-date information about this and other talks is available online at http://ewh.ieee.org/r1/boston/computer/.

> You can sign up to receive updated status information about this talk and informational emails about future talks at http://mailman.mit.edu/ mailman/listinfo/ieee-cs, our self-administered mailing list.

> To assist us in planning this meeting, please pre-register at,

http://www.ieeeboston.org/Register/.

Power and Energy Society – 6:00PM, Tuesday, 22 March (Refreshments start at 6PM, talk commences at 6:30PM)

Cyber-Security Innovations for Next Generation Photo-Voltaic (PV) inverters

Speaker: Brian Dow, Director of Engineering at Yaskawa, Solectria Solar

With increasing connectivity being industry leading, highly secured web enabled PV designed into PV inverters, security inverters, and will discuss: o The typical applicaweaknesses may be exposed with- tions/need for web connectivity in PV Inverter apout strong cyber-security emphasis plications. o Cyber-Security challenges for web during design and validation. • Yas- connected PV inverters and other controls equipkawa, Solectria Solar is developing ment. o Web security design fundamentals, types of threats, attacks, and countermeasures for PV bility. His circuit designs and embedded software inverters. o A next generation PV inverter commu- are at the core of over 25 commercially successful nications system prototype will be shown and security aspects of the design will be discussed.

Brian Dow is the Director of Engineering at Yaskawa, Solectria Solar. His current research and development activities focus on Next Generation Photo-Voltaic (PV) Inverter designs including: High performance DSP controllers, Advanced Inverter Communications systems, and software security, safety, and reliability of PV inverters. Before joining Solectria Renewables in 2008, Mr. Dow worked at Free and Open to the Public – Visit the IEEE PES Cadence Design Systems where he held positions as Senior and Lead Systems Engineer. Mr. Dow has created several families of next generation tension control amplifiers and controllers featuring: low cost, very long life, and very high accuracy and sta-

products.

He has been an engineering leader in various capacities since 2004. Mr. Dow received a Bachelor of Science degree in Electrical Engineering from Norwich University, the Military College of Vermont.

Meeting Location: National Grid, 40 Sylvan Road, Waltham, MA 02451 (Rooms: Valley A&B)

Chapter website for further details http://www.ieeepesboston.org/ To assist us in planning this meeting, please pre-register at, http://www.ieeeboston.org/Register/.

Life Members and Aerospace and Electronic Systems Society – 4:00PM, Wednesday, 23 March

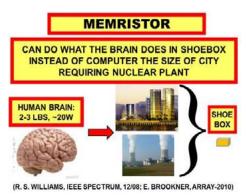
Breakthroughs in Phased-Arrays and Radars – An Update

Dr. Eli Brookner. Raytheon Co. (retired)

and breakthroughs in Active Electronically Steered Arrays (AESAs) and radar including Extreme MMIC, graphene, digital beam forming. Potential continuation of Moore's Law: 1. via Spintronics - which could revolutionize computer architecture away

from John von Neumann model, 2. via Memristor which potentially allows one to do what human brain does in a shoe box instead of a computer the size of a city requiring a nuclear power plant, 3. via Graphene which has potential for Thz clock speed transistors, or 4. via Quantum Computing - which has the potential of orders of magnitude advance in computation power per 2 years. New Kymeta Meta-

Covered will be recent developments material Antenna finally explained in simple terms. Shown to be a thinned array with pseudo-random thinning. Does not use holography. MIMO (Multiple Input Multiple Output): Explained in simple physical terms instead of with heavy math; where it makes sense to use and how conventional arrays can do


QUANTUM COMPUTING

POTENTIAL FOR X10 TO 100'S **INCREASE IN** COMPUTER **POWER EVERY GENERATION INSTEAD OF OF X2** OF MOORE'S LAW*

VERN BROWNELL, GIGAOM STRUCTURE DATA CONF., 2014) PHOTO COURTESY RAYTHEON BBN

as well. Printed Electronics: Low cost 1.6 GHz printed diodes achieved (goal 2.4 GHz). Electrical and Optical Signals on Same Chip; IR transparent in silicon. Biodegradable Arrays of Transistors

or LEDs: ded under skin for Phased detecting cancer or rays & Radar. low glucose. Quan-Radar: See tum stealth targets. Will include latest Photos from Travels to Turkey, China and Africa. Talk given

so that lay person can appreciate.

Dr. Eli Brookner Bio: MEE & DrSc Columbia Un '55 &'62; BEE CCNY, '53. Raytheon 1962-2014 (retired) ; Principal Engineering Fellow; worked on radars for air traffic control, military defense, space & navigation: on ASDE-X, ASTOR RADARSAT II, AGBR, major Space Based Radar programs, NAVSPA-SUR, COBRA DANE, PAVE PAWS, MSR, COBRA JUDY Replacement, THAAD, SIVAM, SPY-3, Patriot, BMEWS, UEWR, SRP, Pathfinder, Upgrade for >70 ARSRs, AMDR, Space Fence, 3DELRR. Before Raytheon: Columbia Un Electronics Research Lab. [now RRI], Nicolet, & Rome AF Lab; Awards: IEEE 2006 Dennis J. Picard Medal for Radar Technology & Application; IEEE '03 Warren White Award; Journal of Franklin Institute Premium Award best paper, 1966; IEEE Wheeler Prize for Best Applications Paper, 1998. Fellow: IEEE, AIAA, & MSS. 4 books:

Imbed-Tracking, >10,000 tended courses in 25 countries. Banquet & keynote speaker 13 publications. > "ASSUMED EACH TUBE OCCUPIED 1X1X2 IN3 100 invited, 6

NUMBER OF TRANSISTORS MADE IN 2014*: 2.5X10²⁰

USING VACUUM **TUBES WOULD COVER EARTH** SURFACE & BE ~8 MILES HIGH**

times. > 230 (*IEEE SPECTRUM: http://spectrum.aeeco.governess) (*IEEE SPECTRUM: http://spectrum.ieee.org/computing/hardware.

papers in Books of Reprints. 9 patents.

The meeting will be held at the Lincoln Lab Auditorium, 244 Wood Street., Lexington, MA at 4:00 PM. Refreshments will be served at 3:30 PM. Registration is in the main lobby. Foreign national visitors to Lincoln Lab require visit requests. Please pre-register by e-mail to reception@II.mit.edu and indicate your citizenship. Please use the Wood Street Gate.

For directions go to http://www.ll.mit.edu/; for other information, contact Steve Teahan, Chairman, at (978)763-5136, or Steve.F.Teahan@raytheon.com

To assist us in planning this meeting, please pre-register at

http://www.ieeeboston.org/Register/.

Consultants Network – 6:30PM, Wednesday, 23 March

Don't tell your customers to read the bleeping manual!

Steven Greffenius

Constant Contact, 1601 Trapelo Road, Great Room South, First Floor, Waltham, MA 02451

Companies recognize that if they cannot manage their digital content effectively, they cannot communicate with their customers, prospective customers, partners, or employees. A lot rests on the processes and tools a company employs to manage digital information.

As a consultant, you cannot influence how your clients manage their content. You have to accept what they have in their place. So what happens when you discover your client has patched together a management system that does not work all that well? The company still expects you to adapt your methods to their house: you are not going to reorganize the kitchen for them, or change the way they prepare their meals. All the documents related to your project will go through their system.

This talk offers practical ideas to help you and your clients meet the challenges of effective content management, when you have to adapt to systems you did not create.

In business since 1997 as a writer, editor, and publisher for technical and business documents, Steven has been a past chair of Boston CNET and active in the Society of Professional Communications. Contact his website Puzzle Mountain Digital for document management services of all kinds.

PLEASE NOTE: The meeting is open to the public. No charge for Consultants Network members or employees of Constant Contact; \$5 entrance fee for all others. Casual dress.

Registration • (no registration required)

The Consultants Network meeting starts at 6:30 PM. The meeting will take place at Constant Contact, Reservoir Place - 1601 Trapelo Road, Waltham, MA 02451, in the Great Room on the First Floor.

Driving Directions: Follow I-95/route 128 to Trapelo Rd in North Waltham, Waltham. Take exit 28 from I-95/route 128. (https://goo.gl/maps/tvn3I)

Consultants Network meetings generally take place on the fourth Wednesday of each month, but are not held during the summer months. Check the Consultants Network website for meeting details and last-minute information. http://www.boston-consult.com/calendar.php

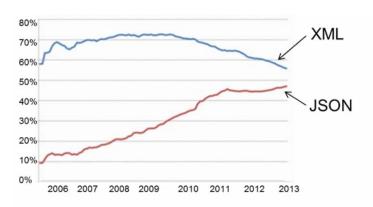
For more information, e-mail cn.boston@ieee. org or chairman@boston-consult.com; or contact the chairman Heinz Bachmann, at 978-637-2070. The Consultants Network website is at www.boston-consult.org.

Data Interoperability using JSON and JSON Schema

Date & Time: Tuesday & Wednesday; May 3 & 4; 8AM - 4PM

Location: Crowne Plaza Hotel, 15 Middlesex Canal Park Road, Woburn, MA

Speaker: Roger Costello, MITRE


Description/Overview:

JSON is a very popular data format. It is heavily used in data exchanges between browsers and web servers but its usage has expanded well beyond browser-server data exchanges. This class covers all parts of the JSON data format. Upon completion the student will be able to create JSON documents of arbitrary complexity. JSON Schema is a powerful language for specifying the allowable content of JSON documents. JSON Schema is often used as a contract between machines exchanging JSON data. To ensure conformance to the contract JSON documents are validated against a JSON Schema using a JSON Schema validator. Roughly 2/3 of the first day is spent on JSON. The remaining time is spent on JSON Schema (which is considerably more complex than JSON). Security risks of JSON and JSON Schema and how to mitigate the risks will be emphasized.

This is an packed class, lots of excellent information is covered. The instructor created a tutorial on JSON and JSON Schema, consisting of over 300 Powerpoint slides, 100 examples, and 16 lab exercises. The class is a hands-on course. Over the 2 days the student will have ample opportunity to test their understanding of the material, as he/she works on 16 lab exercises. A zip file will be provided containing the complete tutorial. The student must bring a laptop and have internet access (we will be using an on-line JSON Schema validator).

Target audience:

This class is for anyone dealing with data: exchang-

Based on directory of 11,000 web APIs listed at Programmable Web, December 2013

ing data, manipulating data, creating data. No programming experience required. Experience with HTML and/or XML is useful.

Benefits of attending or goals of course: You will understand the JSON data format and be able to create JSON documents of arbitrary complexity. You will understand how to specify the format of JSON documents using JSON Schema and how to validate JSON documents against a JSON Schema.

Outline:

- Comparison of JSON to other data formats (e.g., XML)
- JSON 7 types of values: object, array, string, number, true, false, null
- JSON Schema we will cover all the keywords for specifying schemas, such as type, minimum, maximum, multipleOf, pattern, maxLength, items, maxItems, properties, and many others

Materials included with registration: Course notes. A zip file will be provided containing the complete tutorial. The student must bring a laptop and have internet access (we will be using an on-line JSON Schema validator).

Speaker Bio: Roger Costello has a Ph.D. in computer science from Ohio State University. His specialty is data formats. For 15 years he was immersed in the XML suite of technologies and has written dozens of articles on various aspects of XML. For the last three years he has focused on the JSON technologies. He has taught the JSON, JSON Schema class at his company to standing-room only classes.

Decision (Run/Cancel) Date for this Courses is Friday, April 22, 2016

Payment received by April 19

Members \$395 Non-members \$435

Payment received after April 19

IEEE Members \$435 Non-members \$475

http://ieeeboston.org/event/data-interoperability-using-json-and-json-schema-spring-2016/

IEEE Boston Section Awards- Call for Nominations

IEEE BOSTON SECTION AWARDS

The Boston Section presents awards annually to distinguished members of the Section. The award nominations are due by January 31st and the awards are presented in May. The description, requirements, and eligibility for those awards are listed below.

DISTINGUISHED MEMBER AWARD

Description: The purpose of this award is to recognize distinguished long-term service to the Boston Section of the IEEE and significant contributions in an IEEE field of interest.

Eligibility: Individuals nominated for this award must have been members of the Boston Section for at least the previous ten (10) years. Individuals nominated for this award must currently be members of the Boston Section and members of the IEEE. The award is based upon evidence of distinction in long-term service to the Boston Section and for contributions to the fields of interest to the IEEE. Selection criteria include leadership roles

and leadership quality, innovative and important contributions to the Boston Section, service and dedication to the Boston Section, and technical achievements in the fields of interest to the IEEE.

DISTINGUISHED SERVICE AWARD

Description: The purpose of this award is to honor an IEEE Boston Section member who has made exceptional and distinguished contributions to the Boston IEEE Section. Eligibility: Individuals nominated for this award must be members of the Boston Section and the IEEE. The award is based upon evidence of distinguished service to the Boston Section. Selection criteria include leadership roles and leadership quality, innovative and important services/contributions to the Boston Section.

STUDENT ACHIEVEMENT AWARD

Description: The purpose of this award is to recognize a college student who demonstrates the potential to become a distinguished leader and outstanding contributor in an IEEE field of interest.

Eligibility:

Individuals nominated for this award must be a student, in good standing, at an institution of higher education located in the Boston Section or be a legal resident within the Boston Section who is attending an institution of higher education outside the Section. The nominee may be a student pursing an undergraduate or graduate degree. The nomination must be submitted by, or endorsed by, the student's major advisor. All nominees' major field of study must be in an IEEE field of interest. The award is based upon evidence of distinguished leadership, accomplishment, and/or outstanding contributions that further the aims of the IEEE.

Presentation: All awards will be presented at the Boston Section's annual event.

IEEE fields of Interest

Engineering

Computer Sciences and Information Technology

Physical Sciences

Biological and Medical Sciences

Mathematics

Technical Communications

Education

Management

Law and Policy.

IEEE BOSTON SECTION AWARDS NOMINATION FORM Application deadline February 20th Applications should be sent to susan.murphy@jeee.org

Nominee information

Please provide the following: name, address, telephone number, email address, and IEEE member number for the candidate.

Award for which candidate should be considered:

Distinguished Member Award

In recognition of the outstanding longterm service (10-years or more) of an IEEE Boston Section member to the Boston Section of the IEEE and significant contributions in an IEEE field of interest

Distinguished Service Award

In recognition of exceptional and distinguished contributions to the IEEE Boston Section by an IEEE Boston Section member

Student Achievement Award

In recognition of a college student who demonstrates the potential to become a distinguished leader and outstanding contributor in an IEEE field of interest

Citation Wording

Please provide 3 lines of suggested wording for the award plaque (not more than 25 words).

Nominee background

Please provide the follow information for the nominee: Resume; Short biography (not more than 500 words) including: Years of experience, years of active IEEE membership, positions held within IEEE, and society and affinity group membership(s) within IEEE

Endorsement

Please provide a letter of endorsement for the nominee. Include a summary of the contribution(s) you believe warrants this nomination (not more than 250 words).

Nominator information

Please provide the following: name, address, telephone number, email address, and IEEE member number for the nominator.

Making You a Leader - Fast Track

Date & Time: Wednesday, April 27; 8:30AM - 5:00PM

Location: Crowne Plaza Hotel, 15 Middlesex Canal Park Road, Woburn, MA

Speaker: Robin Goldsmith, President, GoPro Management

We do projects to make change. Yet, change will not occur without leadership, and leaders are rare. Leaders make others want to do what the leader wants done. Leaders cause ordinary people to achieve extraordinary things. Managing is not the same as leading, and titles do not make leaders. Seminars can teach you to manage, but they cannot teach you to be a leader. Rather, making a leader takes special techniques—such as our personal development **OUTLINE** clinics—that can change deep-seated behaviors learned over a lifetime. However, since clinics usually last about ten weeks, this mini-clinic was devised as a more convenient alternative. This format places responsibility upon the participant to carry out an extended informal follow-on program after completion of the formal seminar workshop session. During the follow-on period, the participant uses time-condensed methods that simulate the lifetime learning which makes a leader. Therefore, commitment to carrying out these exercises is essential for successful transformation.

Participants will learn:

- Leadership characteristics and practices that are essential for project and personal success.
- Differences between management and leadership, how they conflict, and why leaders are so rare.
- Behaviors leaders use to influence others, up and down, to want to do what the leader wants them Conscious and unconscious messages to do
- Special techniques personal development clinics use to change lifetime learning and make leaders.
- How to employ those special techniques in a fol- Influencing up and down without authority

low-on mini-clinic to develop the leadership skills they need to make their projects successful.

WHO SHOULD ATTEND: This course has been designed for business and systems professionals who want to improve their ability to lead and influence other people.

LEADERSHIP CHARACTERISTICS & ROLE

How leadership looks and feels Management vs. leadership Leadership components of project success Basic leadership practices; power sources Real change leaders in organizations

TEAMS AND LEADERSHIP

Everyone feels leadership is lacking Everyone thinks s/he is a leader Results, not actions or intent Workgroups, teams, and leaders Situational leadership styles Coaching and sports analogies to projects

INSPIRING AND MOTIVATING

Gaining commitment to project success Communicating that influences others Addressing negativism and groupthink Greatest management principle Hierarchy of needs effects on projects Hygiene factors vs. motivators Helping project players get their rewards Inspiring the extra efforts projects need Energizing the project team

SHARED VISIONS

Relating values and vision to projects Getting others to embrace one's vision Developing a motivating project vision

WHERE AND HOW LEADERS ARE MADE

Born or made? How do we know?
Habits of thought that affect project success
Overcoming self-limiting lifetime learning
Leader's critical success factors
Traditional education doesn't make leaders
Special way—personal development clinics

SETTING AND ACCOMPLISHING GOALS

S.M.A.R.T. goals for self and project Action plans to achieve your goals Visualizing and emotionalizing

DEFINING THE FOLLOW-ON PROGRAM

Clarifying project leadership objectives Breaking into prioritized subgoals Establishing rewarding daily achievements Special techniques to change habits

CARRYING OUT THE MINI-CLINIC

Working with a follow-up support structure Mapping results regularly to goals Objectively recording leadership changes Self-leadership through the process

Speaker's Bio:

Robin F. Goldsmith, JD is an internationally recognized authority on software development and acquisition methodology and management. He has more than 30 years of experience in requirements definition, quality and testing, development, project management, and process improvement. A frequent featured speaker at leading professional conferences and author of the recent Artech House book, Discovering REAL Business Requirements for Software Project Success, he regularly works with and trains business and systems professionals.

Decision (Run/Cancel) Date for this Courses is Monday, April 18, 2016

Payment received by April 13

Members \$220 Non-members \$245

Payment received after April 13

IEEE Members \$245 Non-members \$265

http://ieeeboston.org/event/making-you-a-leader-fast-track-fall-2015/

Defining and Writing Business Requirements

Date & Time: Monday & Tuesday, April 25 & 26; 8:30AM - 5:00PM

Location: Crowne Plaza Hotel, 15 Middlesex Canal Park Road, Woburn, MA

Speaker: Robin Goldsmith, President, GoPro Management

for projects always has been the weakest link in sys- ing professionals, auditors, and others responsible tems development. Up to 67 percent of maintenance for assuring business requirements are defined adand 40 percent of development is wasted rework and equately. creep attributable to inadequately defined business requirements. Too often projects proceed based on OUTLINE something other than what the business people really need; and traditional methodologies commonly REQUIREMENTS ROLE AND IMPORTANCE focus mainly on the format for writing requirements. Sources and economics of system errors This interactive workshop also emphasizes how to How requirements produce value discover content, why to build it and what it must do Business vs. system requirements to produce value for the customer/user. Using a real Survey on improving requirements quality case, participants practice discovering, understand- Software packages and outsourcing ing, and writing clear and complete business/user How we do it now vs. what we should do requirements that can cut creep, speed project delivery, reduce maintenance, and delight customers DISCOVERING "REAL" REQUIREMENTS

Participants will learn:

- business requirements accurately and complete- Technology requirements vs. design ly.
- quirements and the system's (design) require- Horizontal processes and vertical silos ments.
- and interpret them meaningfully.
- Using the Problem Pyramid™ tool to define clear- Management/supervisor vs. worker views ly problems, causes, and real requirements.
- · Formats for analyzing, documenting, and com- DATA GATHERING AND ANALYSIS municating business requirements.
- Techniques and automated tools to manage re- Research and existing documentation quirements changes and traceability.

WHO SHOULD ATTEND: This course has been de- Planning an effective interview signed for systems and business managers, project Controlling with suitable questions

Discovering and documenting business requirements leaders, analysts, programmer analysts, quality/test-

Do users really not know what they want? How the "real" requirements may differ Avoiding creep--role and importance of defining Aligning strategy, management, operations Problem Pyramid™ tool to get on track Distinctions between the user's (business) re- Understanding the business needs/purposes Customer-focused business processes How to gather data, spot the important things. Who should do it: business or systems? Joint Application Development (JAD) limits

Surveys and questionnaires Observing/participating in operations Prototyping and proofs of concept

FORMATS TO AID UNDERSTANDING

Business rules, structured English E-R, data flow, flow, organization diagrams Data models, process maps performance, volume, frequency statistics Sample forms, reports, screens menus

DOCUMENTATION FORMATS

IEEE standard for software requirements Use cases, strengths and warnings 7 guidelines for documenting requirements Requirements vs. implementation scope Iterating to avoid analysis paralysis Conceptual system design solutions Detailing for clarity, clarifying quality

GETTING MORE CLEAR AND COMPLETE

Stakeholders and Quality Dimensions Addressing relevant quality factor levels Standards, guidelines, and conventions **Detailing Engineered Deliverable Quality** Simulation and prototyping Defining acceptance criteria

MANAGING THE REQUIREMENTS

Supporting, controlling, tracing changes Automated requirements management tools Measuring the "proof of the pudding"

Speaker's Bio:

Robin F. Goldsmith, JD is an internationally recognized authority on software development and acquisition methodology and management. He has more than 30 years of experience in requirements definition, quality and testing, development, project management, and process improvement. A frequent featured speaker at leading professional conferences and author of the recent Artech House book, Discovering REAL Business Requirements for Software Project Success, he regularly works with and trains business and systems professionals.

Decision (Run/Cancel) Date for this Courses is Friday, April 15, 2016

Payment received by April 12

Members \$415 Non-members \$430

Payment received after April 12

IEEE Members \$430 Non-members \$455

http://ieeeboston.org/event/making-you-a-leader-fast-track-fall-2015/

Basics of Software Defined Networking (SDN)

Date & Time: Saturdays, April 23 & 30; 9AM - 12 noon; Monday May 3, 6-9PM (optional)

Location: TBD (along Rt. 128 between Lexington and Woburn)

Speaker: Dr. Bhumip Khasnabish, ZTE (TX) Inc.

tions for SDN and architectures of SDN will be dis- services will be also covered. We'll use IEEE and

Introduction: This is an introductory level course cussed. Network migration and transformation for on Software Defined Networking (SDN). Motiva- supporting SDNized organic and over the top (OTT)

Please take this short survey, https://www.surveymonkey.com/r/B8R2DYL

other journal/magazine publications and published The assignments will help the students initiate and standards specifications as reference materials for complete exercises using open source platforms this course. Hands-on assignments will help the and test beds. students initiate and complete exercises using open source platforms and test beds. We'll also discuss novel techniques for solving the emerging real-life/operator challenges related to (i) cost-effective network infrastructure development, and (ii) networked services and security management.

Outline of Topics to be covered:

- What is SDN and Why do we need SDN?
- SDN Architecture Overview
- **Projects**
- Controller
- Controller
- tual) Labs
- Migration to SDN and Integration with Legacy Networks
- Hands-on works/assignments suggestions using open source test beds

Target Audience:

The course is designed for network and network software/system designers who are considering to gain introductory knowledge about SDN.

Benefits of Attending the Course:

This is an introductory level course on Software Defined Networking (SDN). The students will learn about motivations for and architectures of SDN as applicable to the mobile and multimedia networks for both organic and over the top (OTT) services.

Materials included in the course:

A summary of the slides, and a list of useful web resources including a few white papers.

Speaker Bio:

Dr. Bhumip Khasnabish works in the Strategy Planning and Standards Development division of ZTE (TX) Inc., USA. Previously, he worked at Verizon/ GTE Laboratories (Waltham, MA, USA) and at Bell-Northern Research (BNR) Ltd. (Ottawa, Ontario, Review of Open Source SDN and related Canada). His research interests include network and system virtualization, network coding, open North- and South-bound Interfaces of SDN networks and systems, and software-defined networking and services. Bhumip initiated cloud and East- and West-bound Interfaces of SDN data center activities in the IETF, co-chaired the ATIS IPTV Interoperability Forum (IIF), and founded Review of Open Source SDN Tools and (Virand chaired both the ATIS NG-CI task force and the MSF Services WG. In addition, he is a member of the DMTF and ONF leadership teams. As an ONF member, Bhumip contributed to the development of: Migration Use Cases and Methods, Migration Tools and Metrics, and SDN Migration Considerations.

> Decision (Run/Cancel) Date for this Courses is Friday, April 14, 2016

Payment received by April 11

Members \$235 Non-members \$255

Payment received after April 11

IEEE Members \$255 Non-members \$275

http://ieeeboston.org/event/basics-of-software-defined-networking-sdn-spring-2016/

Introduction to Embedded Linux

Last Notice Before Course Begins, Please Register Now !!!!

Time & Date: 6 - 9PM; Mondays, March, 7, 14, 21, 28

Location: Crowne Plaza Hotel, 15 Middlesex Canal Park Road, Woburn, MA

Mike McCullough, RTETC, LLC Speaker:

Overview - This 4 day course introduces the Linux Operating System and Embedded Linux Distributions. The course focuses on the development and creation of applications in an Embedded Linux context using the Eclipse IDE. The first part of the course focuses on acquiring an understanding of the basic Linux Operating System, highlighting areas of con- Additional Reference Materials cern for Embedded Linux applications development • Linux Kernel Development by Robert Love using Eclipse. The latter part of the course covers . Linux System Programming by Robert Love testing, booting and configuring of Embedded Linux systems including embedded cross-development • Pro Linux Embedded Systems by Gene Sally and target board considerations.

Who Should Attend - The course is designed for • Linux Device Drivers by Jonathan Corbet et al real-time engineers who are building Embedded Linux solutions. It is also targeted at experienced Venkateswaran developers requiring a refresher course on Embedded Linux. This course will clearly demonstrate both the strengths and weaknesses of the Linux Operating System in Embedded Systems.

Course Objectives

- and the Eclipse IDE framework.
- Linux Distributions in embedded systems.
- To learn how to configure, boot and test Embedded Linux distributions and applications running on Embedded Linux target systems.
- · To give students the confidence to apply these concepts to their next Embedded Linux project Hardware and Software Requirements - The stu- The Basics dent should have a working Linux desktop environ- Linux Terminology, History and Versioning ment either directly installed or in a virtualization. The Linux Community: Desktop & Embedded environment. The desktop Linux should have the Linux and the GPL GNU compiler and binary utilities (binutils) already Linux References (Books and Online) installed. A working Eclipse C/C++ installation or Getting Started

prior knowledge of C-based Makefiles is useful for completion of lab exercises. Lab solutions are also provided with the course. An Embedded Linux target hardware platform is useful but not absolutely required for this course.

- Embedded Linux Primer by Christopher Hallinan
- Embedded Linux Development Using Eclipse by Doug Abbott
- Essential Linux Device Drivers by Sreekrishnan

Lecturer – Mike McCullough is President and CEO of RTETC, LLC. Mike has a BS in Computer Engineering and an MS in Systems Engineering from Boston University. A 20-year electronics veteran, he has held various positions at LynuxWorks, Tilera, • To provide a basic understanding of the Linux OS Embedded Planet, Wind River Systems, Lockheed Sanders, Stratus Computer and Apollo Computer. • To understand the complexities of Embedded RTETC, LLC is a provider of Eclipse-based development tools, training and consulting for the embedded systems market.

OUTLINE

Course Schedule Day 1

Building the Kernel Source Code

Embedded Linux Kernels

Linux 2.6 and 3.x

Basic Kernel Capabilities

Process and Threads Management

Signals and System Calls

Synchronization, IPC and Error Handling

Timing and Timers

Memory Management and Paging

The I/O Subsystem: A Tale of Two Models

Modularization

Debugging

Process-Level and System-Level Debug

GDB, GDB Server and the GDB Server Debugger

Other Debug and Test Tools

An Eclipse Remote Debug Example

Advanced Debug with printk, syslogd and LTTng

System-Level Debug

System-Level Debug Tools

The /proc Filesystem

Advanced Logging Methods

KGDB and KDB

Crash and Core Dumps

Course Schedule Day 2

Process & Threads Management What are Processes and Threads?

Virtual Memory Mapping

Creating and Managing Processes and Threads

Thread-Specific Data (TSD)

POSIX

The Native POSIX Threading Library (NPTL)

Kernel Threads

Signals

System Calls

Scheduling

Linux 2.4 and 2.6 Scheduling Models

The O(1) Scheduler

The Completely Fair Scheduler (CFS)

Synchronization

Via Global Data

Via Semaphores, Files and Signals

Condition and Completion Variables

Mutexes and Futexes

Inter-Process Communications (IPC)

Message Queues

Semaphores Revisited

Shared Memory

Pipes and FIFOs

Remote Procedure Calls

Networking

Course Schedule Day 3

Memory Management and Paging

Demand Paging and Virtual Memory Allocating User and Kernel Memory

Mapping Device Memory

The Slab Allocator

The OOM Killer

Memory in Embedded Systems

Advanced Memory Operations

Linux and Memory

Managing Aligned Memory

Anonymous Memory Mappings

Debugging Memory Allocations

Locking and Reserving Memory

Error Handling

errno and perror

strerror and strerror r

oops, panics and Segmentation Faults

Timing

How Linux Tells Time

Kernel, POSIX and Interval Timers

High-Resolution Timers (HRTs)

Modularization

Creating a Module and Module Loading

Dependency Issues

In Embedded Systems

Shared Libraries

A Shared Library Example

Static and Dynamic Libraries

The I/O Subsystem: A Tale of Two Models

The Original Device Driver Model

The Standard I/O Interface

Major and Minor Numbers

Configuring the Device Driver

The Evolution of the New Device Driver Model

The Initial Object-Oriented Approach

Platform Devices, Busses, Adapters and Drivers

Comparing the Two Driver Models

Course Schedule Day 4

Advanced I/O Operations

Standard I/O Operations

Scatter-Gather and Asynchronous I/O

Poll, Select and Epoll

Memory-Mapped I/O

File Advice

I/O Schedulers

Interrupt and Exception Handling

Bottom Halves and Deferring Work

The Linux Boot Process

The Root Filesystem

Desktop Linux Boot

Bootloaders and U-Boot

Embedded Linux Boot Methods

Building and Booting from SD Cards

Managing Embedded Linux Builds

Configuring and menuconfig

Building Custom Linux Images

Target Image Builders

LTIB and Yocto

System Architecture Design Approaches

Deploying Embedded Linux

Choosing and Building the Root Filesystem

Useful Embedded Filesystems

Module Decisions

Final IT Work

Embedded Linux Trends

Some Final Recommendations

Decision (Run/Cancel) Date for this Courses is Friday, February 26, 2016

Payment received by Feb. 23

Members \$400

Non-members \$430

Payment received after Feb. 23

IEEE Members \$430

Non-members

\$455

To Register, http://ieeeboston.org/event/introduction-embedded-linux-spring-2016

Call for Course Speakers/Organizers

IEEE's core purpose is to foster technological innovation and excellence for the benefit of humanity. The IEEE Boston Section, its dedicated volunteers, and over 8,500 members are committed to fulfilling this core purpose to the local technology community through chapter meetings, conferences, continuing education short courses, and professional and educational activities.

Twice each year a committee of local IEEE volunteers meet to consider course topics for its continuing education program. This committee is comprised of practicing engineers in various technical disciplines. In an effort to expand these course topics for our members and the local technical community at large, the committee is publicizing this CALL FOR COURSE SPEAKERS AND ORGANIZERS.

The Boston Section is one of the largest and most technically divers sections of the IEEE. We have over 20 active chapters and affinity groups.

If you have an expertise that you feel might be of interest to our

members, please submit that to our online course proposal form on the section's website (www.ieeeboston.org) and click on the course proposal link (direct course proposal form link is http://ieeeboston.org/course-proposals/. Alternatively, you may contact the IEEE Boston Section office at sec.boston@ieee.org or 781 245 5405.

- Honoraria can be considered for course lecturers
- Applications oriented, practical focused courses are best (all courses should help attendees expand their knowledge based and help them do their job better after completing a course
- Courses should be no more than 2 full days, or 18 hours for a multi-evening course
- Your course will be publicized to over 10,000 local engineers
- You will be providing a valuable service to your profession
- Previous lecturers include: Dr. Eli Brookner, Dr. Steven Best, Colin Brench, to name a few.

IEEE Photonics Society Boston Chapter Presents:

Optical Sensors Workshop

Wednesday, April 6, 13, 20, 27, May 4, 2016, 7:00-9:30 PM Located at MIT Lincoln Laboratory - 3 Forbes Road, Lexington, MA, 02420, USA

Optical sensing is ubiquitous in science and technology, and is becoming prevalent in our daily lives. These sensors cover a wide range of complexity, from the simple clip-on oxygen monitoring devices in our local doctor's office, to the miniature CCD arrays in our smart phone cameras, to the high-sensitivity optical gyroscopes navigating the planes we occupy when flying. This proliferation of optical sensors is due to the wide availability of varied optical sources and detectors, which are enabled by new materials, a better understanding of the physics of environmental optical perturbations, and the wide availability of custom designed optical fibers, as well as powerful software codes linking it all together. One advantage of optical sensors is that they can have unprecedented precision - for example optical clocks (femto-seconds) and superresolution optical microscopy (nano-meters). Other uses include, Light Imaging Detection and Ranging (LIDAR) - for remote sensing, environmental monitoring, and bio-sensor detection of biologically active substances for food safety. This workshop will bring together leading experts to discuss the status and performance of these optical sensors and many more, and the remaining hurdles to overcome for achieving an even larger deployment of them all.

Wednesday	Exploring the Warped Side of the Universe: The Search for Gravitational Waves
April 6, 2016	Prof. Nergis Mavalvala, Massachusetts Institute of Technology, Cambridge, MA

Transiting Exoplanet Survey Satellite (TESS): Designing a Sensor for Full Sky Mapping

Exoplanet Detection

Ms. Kristin Clark, MIT Lincoln Laboratory, Lexington, MA

Wednesday Searching For Applications With A Fine Toothed Frequency Comb

April 13, 2016 Dr. Nathan R. Newbury, NIST, Boulder, CO

Optical Fiber Interferometry At The Extremes: From Crack Detection To Shock Detection

Dr. Geoffrey A. Cranch, Naval Research Laboratory, Washington, DC

Integrated Photonic Devices for Inertial Sensing Wednesday

April 20, 2016 Dr. Suraj Bramhavar, MIT Lincoln Laboratory, Lexington, MA

Superconducting Gravity Gradiometers for Precision Tests of Gravitation, Planetary Gravity

Mapping and Gravitational Wave Detection

Prof. Ho Jung Paik, University of Maryland, College Park, MD

Opening Up 3D Phase Space for Optical Measurements Using CMOS Fast Wave-form Wednesday

Sampling and Large-area Sub-50-psec-resolution Planar Photodetectors

Prof. Henry Frisch, University of Chicago, Chicago, IL

From Quantum Transduction to Inertial Navigation Using Optoelectromechanics

Prof. Jacob Taylor, University of Maryland & NIST, College Park, MD

Wednesday Ultra-Precise Metrology Employing Fast Light: Rotation Sensing, Accelerometry and **Gravitational Wave Detection**

May 4, 2016

Prof. Selim Shahriar, Northwestern University, Evanston, IL

Novel Optical Sensor configurations for Super-Resolution and Compressive Sensing Imaging

Dr. Robin Dawson, Charles Stark Draper Laboratory, Cambridge, MA

Advance registration and fee required (Open to all IEEE members as well as non-members)

\$75/\$85 (IEEE Member/Non-Member) early registration fee for ten 1-hour talks over 5 nights; cost includes coffee and cookies each night, as well as downloadable copies of speakers slides. Early registration deadline April 1st, 2016. \$85/\$95 (IEEE Member/Non-Member) post deadline fee.

Registration form, abstracts, speaker's bios at: http://www.bostonphotonics.org/workshops/OS16/

For more information contact:

April 27, 2016

- 1) Farhad Hakimi, (fhakimi@ieee.org), Optical Sensors Workshop Co-Chair
- 2) Bill Nelson, (w.nelson@ieee.org), Optical Sensors Workshop Co-Chair
- 3) Ajay Garg, (ajay.sinclair.garg@ieee.org), Optical Sensors Workshop Co-Chair
- 4) Jade Wang (jpwang@ll.mit.edu), Boston Photonics Society Chair

CALL FOR PAPERS

www.ieee-hpec.org

Committees

Senior Advisory Board Chair Mr. Robert Bond MIT Lincoln Laboratory

Senior Advisory Board *Prof. Anant Agarwal* MIT CSAIL

Dr. Richard Games Chief Engineer, MITRE Intelligence Center

Mr. John Goodhue Director, MGHPCC

Dr. Richard Linderman Chief Scientist, Air Force Research Laboratory Information Directorate

Mr. David Martinez
Associate Division Head MIT
Lincoln Laboratory

Dr. John Reynders CIO Moderna

Dr. Michael Stonebraker Co-founder SciDB and Vertica; CTO VoltDB and Paradigm4

Chairman & SIAM Liaison

Dr. Jeremy Kepner Fellow, MIT Lincoln Laboratory

Publicity Co-Chairs

Dr. Albert Reuther
MIT Lincoln Laboratory
Mr. Dan Campbell
GTRI

CFP Co-Chairs

Dr. Patrick Dreher MIT Dr. Franz Franchetti CMU

Publications Chair

Prof. Miriam Leeser Northeastern University

Administrative Contacts

Mr. Robert Alongi
IEEE Boston Section

The IEEE High Performance Extreme Computing Conference (HPEC '16) will be held in the Greater Boston Area, Massachusetts, USA on 13 – 15 September 2016. The HPEC charter is to be the premier conference in the world on the confluence of HPC and Embedded Computing.

The technical committee seeks new presentations that clearly describe advances in high performance extreme computing technologies, emphasizing one or more of the following topics:

- Advanced Multicore Software Technologies
- Case Studies and Benchmarking of Applications
- Automated Design Tools
- Mapping and Scheduling of Parallel and Real-Time Applications
- Computing Technologies for Challenging Form Factors
- ASIC and FPGA Advances
- Open System Architectures
- Data Intensive Computing

- Big Data and Distributed Computing
- Interactive and Real-Time Supercomputing
- Graph Analytics and Network Science
- Fault-Tolerant Computing
- Embedded Cloud Computing
- Digital Front Ends
- General Purpose GPU Computing
- Advanced Processor Architectures
- Secure Computing & Anti-Tamper Technologies
- New Application Frontiers

HPEC accepts two types of submissions:

- 1. Full papers (up to 6 pages, references not included), and
- 2. Extended abstracts (up to 2 pages, references included).

Preference will be given to papers with strong, quantitative results, demonstrating novel approaches or describing high quality prototypes. Authors of full papers can mark their preference for a poster display or an oral presentation. Presenters who wish to have hardware demonstrations are encouraged to mark their preference for a poster display. Accepted extended abstracts will be displayed as posters.

All paper and extended abstract submissions need to use the approved IEEE templates. Full paper submissions with the highest peer review ratings will be published by IEEE in the official HPEC proceedings available on IEEE eXplore. All other accepted submissions and extended abstracts are published on ieee-hpec.org. Vendors are encouraged to sign up for vendor booths. This will allow vendors to present their HPEC technologies in an interactive atmosphere suitable for product demonstration and promotion.

We welcome input (hpec@ieee-hpec.org) on tutorials, invited talks, special sessions, peer reviewed presentations, and vendor demos. Instructions for submitting will be posted on the conference web site shortly.

Modern Wireless System Design: From Circuit to Web-based Apps

Date & Time: 9:00AM - 4:30PM, Thursday & Friday, June 9 & 10, 2016

Location: Crowne Plaza Hotel, 15 Middlesex Canal Park Road, Woburn, MA

Speaker: Henry Lau, Lexiwave Technology

communication products and systems are getting more in number and sophisticated to stay competi- Benefits: and software. It is thus beneficial for an engineer be able to: or manager to acquire a broad understanding on 1. or system works with both hardware and software teristics and specifications components. This course is aimed to provide an 2. sights on the vital aspects of Modern Wireless Sys- formance tem Design from an industry and practical perspec- 3. tive. It is an introductory level for circuit, software, ceiver and transmitter architectures system engineers and mangers who would like to 4. considerations on complete wireless system de- based and app-based software development sign. Various functional blocks of wireless systems 5. and products will be discussed and analyzed with case studies on commercial wireless products practical examples on commercial products.

The software development will also be addressed to provide a comprehensive understanding of the • development of complete wireless systems. The • course will be conducted by a wireless design expert with rich industrial experience. Interactive and • open discussions between speaker and participants are encouraged and facilitated to make the whole • course more interesting and thought stimulating.

Audience: System engineers, wireless product • designers, software engineers, RF and microwave • circuit design engineers, field application engineers, business development engineers and man-

Overview: Nowadays, as the features of wireless agers involved in wireless products and systems.

tive, the products have to contain both hardware Upon completion of this course, participants should

- understand the key functional blocks of Modhow a modern wireless communication product ern Wireless Products/Systems and their charac-
- understand how the key component blocks opportunity for participants to acquire technical in- interact and the implications on overall system per
 - compare and evaluate different types of re-
- comprehensive understanding on the emacquire an overview on the vital aspect and design bedded software development as well as web
 - acquire practical design techniques from

Course Content:

- Receiver
- System Characteristics
- Signal and Noise
- Noise temperature, noise bandwidth, noise figure, sensitivity
- Linearity
- Dynamic Range, one dB compression point, intermodulation
- Critical Circuit blocks
- LNA, local oscillator, mixer, IF amplifier, demodulator, baseband amplifier
- System Architectures and design considerations
- Heterodyne, Direct Conversion, Image-reject

and Low-IF Receiver

Sample Receiver Designs

Transmitter

- Circuit blocks: oscillator, modulator, buffer amplifier, frequency multiplier, power amplifier, output filter
- Major issues: power gain, power efficiency, harmonic prevention and suppression

Wireless Modules

- Types: GPS, Bluetooth, GSM/GPRS, Wifi
- Applications
- Electrical parameters

Miniature Antennas for Portable electronics

- Antenna Fundamentals
- Radiation mechanism
- Source of radiation
- Characteristic of radiation
- Parameters and specifications
- Radiation pattern, antenna efficiency, aperture concept, directivity and gain
- Types of antenna and performance
- Dipole
- Monopole
- Loop
- miniature antennas patch, inverted-L, inverted-F, meandered line
- Practical design considerations and techniques for portable electronics

Software Development

- Embedded device
- Type of MCU
- · Characteristics, functions and features

- Design considerations
- Web database development
- MySQL
- Website development
- Software HTML, Javascript and PHP
- Web server
- Smartpone Apps Development
- Android development tool
- Phonegap
- IOS

Expertise: Henry Lau received his M.Sc. and MBA degrees from UK and USA respectively. He has more than 25 years of experience in designing wireless systems, products and RFICs in both Hong Kong and US. He worked for Motorola and Conexant in US as Principal Engineer on developing RFICs for cellular phone and silicon tuner applications. Mr Lau holds five patents and has one patent pending, all in RF designs. He is currently running Lexiwave Technology, a wireless company in Hong Kong and US designing and selling RFICs, RF modules and wireless solutions. He has also been teaching numerous RF-related courses internationally.

Decision (Run/Cancel) Date for this Courses is Tuesday, May 31, 2016

Payment received by May 25 IEEE Members \$395 Non-members \$435

Payment received after May 25

IEEE Members \$435 Non-members \$455

http://ieeeboston.org/event/modern-wireless-system-design-from-circuit-to-web-based-apps/

QA Testing in the Digital World

Date & Time: 9:00AM - 4:00PM, Saturday, May 7, 2016

Location: Crowne Plaza Hotel, 15 Middlesex Canal Park Road, Woburn, MA

Speaker: Rajkumar J. Bhojan, Wipro Technologies

Overview: As we are entering an era of digital transformation, software organizations across industry sectors are challenged to adopt QA and software in QA Testing in digital technologies coupled with organizational, operational, and business model innovations. Mobile technology is growing at rapid speed. Companies need quick, agile and technology driven organizations to provide an incessant delivery model. Academicians and testing experts have to come up with effective verification techniques to ensure reliability of these mobile applications.

This 6 hours course (lecture/lab) will address the following questions: How to create new ways of adopting QA and testing in their core software. Are we able to deliver better product using existing testing methodologies? Do we have a better solution for verifying and validating IOT devices with real time data? What is the role of test automation in DevOPs environment? During the lab portion of the agenda, a laptop will be required and all software will be made available to participate in the lab exercises.

Target Audience: IT Professionals Students both UG and PG with Computer Knowledge Researchers (IT)

OUTLINE

- * Introduction to Digital QA Transformation
- * Test Automation in DevOPs environment Tools and Testing Strategies - ATDD and BDD in Agile Projects
- * Hands-on Session on Mobile Test Automation
- * Role of CI and CD in Testing space
- * Mobility Testing and its automation
- * Cloud based solution for Mobile test automation

Goals/benefits of Attending:

- 1. Will get knowledge of software industry trending in QA
- 2. Latest technologies used in Software Testing
- 3. Participants can directly implement the taught methodologies in their software projects
- 4. Research can enhance in Digital transformations

Notes / printouts will be distributed during the session

Speaker bio: Rajkumar J.Bhojan is a Lead Architect (TA), Wipro Technologies, Boston, MA, USA. He has over two decades of professional experience in both IT and Academics. He holds M.Sc., (Phy), MCA, M.Phil (CS) and currently he pursues Ph.D. in Computer Science. He has executed IT projects in diverse geographies including India, Australia, China & USA. He has worked as a QA Manager, Corporate Trainer and Principal Consultant in reputed organizations. He has presented many technical papers at International conferences, Journals and IEEE forums. He is a Certified Scrum Master and has rich experience in Agile/scrum Methodologies. He is a member in IEEE and ACM. http://sites.ieee.org/sem/ files/2013/07/May 2014-WL Rev1.pdf http://www. atagg.agiletestingalliance.org/speakers.html

Decision (Run/Cancel) Date for this Courses is Thursday, April 28, 2016

Payment received by April 25

IEEE Members \$235 Non-members \$255

Payment received after April 25

IEEE Members \$255 Non-members \$275

http://ieeeboston.org/event/qa-and-testing-in-the-digital-world-spring-2016/

Introduction to Network Function Virtualization (NFV)

Date & Time: Saturdays, May 14 & 21; 9AM - 12 noon

Location: Crowne Plaza Hotel, 15 Middlesex Canal Park Road, Woburn, MA

Speaker: Dr. Bhumip Khasnabish, ZTE (TX) Inc.

Introduction:

This is an introductory level course on NFV. Motivations for and implementations of (a) network functions like routers and switches, and (b) service functions like firewalls, load balancers, and quality-of-service managers using virtual machines (VMs) and virtual network functions (VNFs) will be discussed. The use cases, requirements, and frameworks as published by the organizations like ETSI/NFV, ONF and DMTF will be reviewed. Suggestions for a few hands-on assignments using open source NFV test-bed will be also included in this course.

OUTLINE

- Definitions of NFV and SFV (Service Function Virtualization)
- Motivations for NFV and SFV
- DMTF and ETSI/NFV Use cases •Overview of Information and Data Modeling
- •Logical Functional Block Subsidiary Management
- Cross-Domain Identity Management of Resources and Users
- Suggestions for Hands-on Assignments (OPNFV-Arno)

Benefits of Attending:

This is an introductory level course on NFV. The students will learn how the use of virtualization of network and service functions can save both network/

service infrastructure development (CapEx) and operations (OpEx) costs. The use of virtualization and automation are expected make the assignment of resources to services as seamless as practically feasible, as will be demonstrated via discussions of use cases and projects like CORD (Central Office Redesigned using Datacenter).

Materials included in the course:

May provide a summary of the slides, and a list of useful web resources including a few white papers.

Speaker Bio:

Dr. Bhumip Khasnabish works in the Strategy Planning and Standards Development division of ZTE TX Inc., USA as a Senior Specialist/Director. Previously, he worked at Verizon/GTE Laboratories (Waltham, MA, USA) and at Bell-Northern Research (BNR) Ltd. (Ottawa, Ontario, Canada). His research interests include network and system virtualization, network coding, open networks and systems, and software-defined networking and services. Bhumip initiated cloud and data-center activities in the IETF, co-chaired the T&I committee of ATIS IPTV Interoperability Forum (IIF), and founded and chaired both the ATIS NG-CI task force and the MSF Services WG. In addition, he is a member of the leadership teams of both DMTF and ONF.

As an ONF member, Bhumip contributed to the development of: Migration Use Cases and Methods,

Migration Tools and Metrics, SDN Migration Considerations and Use Cases, and SDN Migration Prototype and Demo Proposals. He initiated cost-performance analyses for migrating to OpenFlow-based networks, and participated in SPRING-OpenFlow® activities. As the Chair of DMTF NSM WG, Bhumip initiated and completed several network service and virtualization profile works, and liaison work with ETSI/ISG NFV. Bhumip authored several books, book chapters, and journal and conference papers. He is also an inventor in 31 US patents.

Decision (Run/Cancel) Date for this Courses is Thursday, May 5, 2016

Payment received by May 2 IEEE Members \$195 Non-members \$215

Payment received after May 2

IEEE Members \$215 Non-members \$245

http://ieeeboston.org/event/introduction-to-network-function-virtualization-nfv-spring-2016/

IEEE Boston Section Social Media Links:

Twitter: https://twitter.com/ieeeboston

Facebook: https://www.facebook.com/IEEEBoston

YouTube: https://www.youtube.com/user/IEEEBostonSection

Google+: https://plus.google.com/107894868975229024384/

LinkedIn: https://www.linkedin.com/groups/IEEE-Boston-Section-3763694/about

Advanced Embedded Linux Optimization

Time & Date: 6 - 9PM, Mondays, April 4, 11, 18, 25

Location: Crowne Plaza Hotel, 15 Middlesex Canal Park Road, Woburn, MA

Speaker: Mike McCullough, RTETC, LLC

Course Summary - This 4-day technical training course provides advanced training in the debugging, testing, profiling and performance optimization of Embedded Linux software. The first part of the course focuses on advanced debugging, testing and profiling in an Embedded Linux context with a focus on using Eclipse, Backend Debuggers, JTAG and In-Circuit Emulators as well as Kernel Logging capabilities and Kernel Hacking. The latter part of the course covers performance measurement and optimization affecting boot, memory, I/O and CPU performance and key performance optimization tools for Embedded Linux software including the perfool, advanced cache usage and compiler-based optimization.

Who Should Attend - The course is designed for realtime engineers who are developing high-performance Linux applications and device drivers using Embedded Linux distributions. It is also targeted at experienced developers requiring a refresher course on Advanced Embedded Linux optimization.

Course Objectives

- To understand methods for debugging, profiling and testing Embedded Linux software.
- To provide an overview of Linux application performance measurement and optimization.
- To understand the tools used for performance optimization of Embedded Linux software.
- To give students the confidence to apply these concepts to their next Embedded Linux project.

OUTLINE

Course Schedule Day 1

Getting Started with Embedded Linux Linux and the GPL Building the Kernel Source Code Embedded Linux Kernels BSPs and SDKs Linux References (Books and Online)
Basic Debugging Review
Embedded Applications Debugging
GDB, GDB Server and the GDB Server Debugger
An Eclipse Remote Debug Example
Debugging with printk and LTTng
System Logs
Other Debuggers
System-Level Debug

System-Level Debug System-Level Debug Tools The /proc and /sys Filesystems Basic Logging KGDB and KDB

Crash Dumps and Post-Mortem Debugging
Debugging Embedded Linux Systems
Backend Debuggers
JTAG and In-Circuit Emulators

Hardware Simulators
Analyzers
Debugging Device Drivers
Kernel Probes
Kexec and Kdump
Kernel Profiling

Course Schedule Day 2

Testing
Design for Test
Agile Software Design
Unit-Level Testing
System-Level Testing
Code Coverage Tools
gcov
Automated Testing
DebugFS
Configuring DebugFS
DebugFS Capabilities
Advanced Logging
LogFS

Using Logwatch and Swatch
Using syslogd and syslog-ng

Kernel Hacking
Configuring Kernel Hacking
Kernel Hacking Capabilities
Tracing
ptrace and strace
New Tracing Methods
SystemTap

Ftrace, Tracepoints and Event Tracing

Tracehooks and utrace

Course Schedule Day 3

Profiling
Basic Profiling
gprof and Oprofile
Performance Counters

LTTng

Another DDD Example
Manual Profiling
Instrumenting Code

Output Profiling Timestamping

Measuring Embedded Linux Performance Some Ideas on Performance Measurement

Common Considerations Uncommon Considerations Using JTAG Methods BootLoader Optimizations Boot Time Measurements

Effective Memory and Flash Usage

Filesystem Choices

Addressing Performance Problems
Types of Performance Problems

Using Performance Tools to Find Areas for Im-

provement

Application and System Optimization

Device Driver Optimization
CPU Usage Optimization
Memory Usage Optimization

Disk I/O and Filesystem Usage Optimization

The Perf Tool

Improving Boot Performance

Boot Time Optimization

The Linux Fastboot Capability Building a Smaller Linux

Building a Smaller Application

Filesystem Tips and Tricks

Some Notes on Library Usage Performance Tool Assistance

Recording Commands and Performance System Error Messages and Event Logging

Dynamic Probes

User Mode Linux and Virtualization

Course Schedule Day 4

Improving CPU Performance

Run Queue Statistics

Context Switches and Interrupts

CPU Utilization

Linux Performance Tools for CPU

Process-Specific CPU Performance Tools

Stupid Cache Tricks

Improving System Memory Performance

Memory Performance Statistics

Linux Performance Tools for Memory

Process-Specific Memory Performance Tools

More Stupid Cache Tricks

Improving I/O and Device Driver Performance

Disk. Flash and General File I/O

Improving Overall Performance Using the Com-

piler

Basic Compiler Optimizations

Architecture-Dependent and Independent Opti-

mization

Code Modification Optimizations Feedback Based Optimization Application Resource Optimization

The Hazard of Trust

An Iterative Process for Optimization Improving Development Efficiency

The Future of Linux Performance Tools

Some Final Recommendations

Lecturer Bio – Mike McCullough is President and CEO of RTETC, LLC. Mike has a BS in Computer Engineering and an MS in Systems Engineering from Boston University. A 25-year electronics veteran, he has held various positions at LynuxWorks, Tilera, Embedded Planet, Wind River Systems, Lockheed Sanders, Stratus Computer and Apollo Computer. RTETC, LLC is a provider of Eclipse-based development tools, training and consulting for the embedded systems market.

Decision (Run/Cancel) Date for this Courses is Friday, March 26, 2016

Payment received by March 23

IEEE Members \$395 Non-members \$435

Payment received after March 23

IEEE Members \$435 Non-members \$470

To Register, http://ieeeboston.org/event/advanced-embedded-linux-optimization-spring-2016

Flexible Electronics - Packaging Design, and Materials Analysis for Aerospace, Military, Medical & High end Consumer Products

Time & Date: 8AM - 5PM; Thursday, March 31, 2016

Location: Crowne Plaza Hotel, 15 Middlesex Canal Park Road, Woburn, MA

Tina Barcley, , Chief Technical Officer, TAS Consulting Speaker:

Last Notice Before Course Begins, Please Register Now !!!!

Prerequisites:

Assume Student can read schematics, understand component usages and has some basic thermal . analysis capability.

Class Summary:

This is a one-day session focusing on the advanced • packaging needed for a flexible board design. This course will not cover schematic layout and circuit . design. It will cover what you do with the completed schematic. It will address layout issues to avoid and Course Schedule: what components work best in a flexible design. It 1. will show what methods are available and almost - course will be pushed toward the available to package the flexible circuit board.

What materials work best for which industry?

What analysis should be performed to assure specific. (1/2 hr.) the design will work in the intended environ- 4. ment?

Who should attend?

This course is designed for Engineers involved in 6. the above design elements of a project. This course work-arounds, show stoppers, and terials and environment for designs using flexible hr.) circuits.

Course Objectives:

- Understand circuit board layout changes for questions. (1 hr.) flexible electronics

- Review, Show, Typical Analysis needed for Reliability concerns
- Review electronics Packaging Issues and How to handle them
- Introduce Solder Fatigue concepts and what to do about it
- Review different Industry needs and show the key indicators for each.

- Review student backgrounds and industries industries represented. (1/2 hr.)
- Basic background on flexible boards (1/2 hr.) 2.
- Review schematic layouts what works and what doesn't – this will be industry
- Review analysis needed: structural, thermal, reliability, solder fatigue (1 hr.)
- Walk through analysis for each of the above. 5. (1 hr.)
- Show issues of each of the analysis types, will demonstrate the work needed to review the ma- realistic answers to some industry concerns. (1 ½
 - 7. Review solder fatigue differences for different solders. (1/2 hr.)
 - Review any additional industry needs specific to student's industries and
 - 9. Lab Time- Students to work on project – can Show how to remove Heat in a flexible board. bring one or work on one provided. (1 ½ hr.)

Instructor:

electronic packaging, testing, and analysis (BS Engineering - Thermal and Materials and MS -Systems Engineering and program management. Tina worked for aerospace companies (ITT, TRW, Perkin Elmer, Goodrich and Aerojet), NASA (Marshall Space Flight Center), automotive (both Ford and Chrysler), military black boxes (Singer Librascope, Army, Navy and Air Force modules) as well as high end medical and commercial (Spectracom, MKS, Kodak, etc.). She has run and created testing labs, procedures, designs, fixes for designs, and the first BGA used in high temperature environments. Tina has R&D experience, proposal experiences, and program management experience in all the above industries. She has 21 US patents — all in electronics packaging, materials, and thermal. . Her experience has included all levels of

parts reliability for systems ranging from 6-month Tina Barcley has over 30 years of experience in to 10-year reliabilities. She is a frequent speaker at industry-specific conferences like IMAPS (International Microelectronics and Packaging Society) and ASE (Automotive Society of Engineers) and is on the IPC (IPC - Association Connecting Electronics Industries) Specification Review Panel.

> Decision (Run/Cancel) Date for this Courses is Wednesday, March 16, 2016

Payment received by March 14

IEEE Members \$235 Non-members \$260

Payment received after March 14

IEEE Members \$260 Non-members \$285

To Register, http://ieeeboston.org/event/flexible-electronics-spring-2016

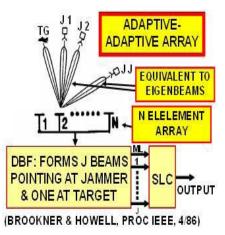
Phased - Array and Adaptive-Array Fundamentals and their Recent Advances

Time & Date: 6 - 9PM; Mondays, March 14, 21, 28, April, 4, 25, May 9, 16, 23, June 6, 13

Location: MITRE Corporation, 202 Burlington Road, Bedford, MA (tentative)

Last Notice Before Course Begins, Speaker: Dr. Eli Brookner, Raytheon Company (Retired) Please Register Now !!!!

PRACTICAL **PHASED ARRAY** ANTENNA SYSTEMS All Attendees of the class will receive a trial license of MATLAB and Phased Array System Toolbox from MathWorks in addition to a set of examples which help demonstrate the key radar concepts covered in the course material.


Text: "Practical Phased Array Antenna Systems", Dr. Eli Brookner, Editor, Artech House, 1991 Hardcover, 258 pages, List Price \$179, Hardcover, 258 pages. Covers array fundamentals: phase and time-delay steering; grating lobes for 1- and 2-dimensional arrays; effects of errors and failures on gain, sidelobes and angle accuracy; array weighting, thinning, blindness, mutual coupling, elements, phase-shifters and feeds; limited field of view (LFOV) arrays; SPY-1; example design.

This course is based on the book entitled Practical ing, Monopulse, Duplexing, Array Thinning, Em-Phased Array Antenna Systems by Dr. Eli Brookner. The book covers array basics and fundamentals which do not change with time. The course, the book and the notes will provide an ideal introduction to the principles of phased array antenna design and adaptive arrays. The course material and notes cover in addition recent developments in phased arrays updated to 2016.

With the explicitly tutorial approach the course and book offers a concise, introductory-level survey of the fundamentals without dwelling on extensive mathematical derivations or abstruse theory. Instead a physical feel will be given. The book provides extensive curves, tables and illustrative examples.

Covered in easy terms will be sidelobe cancellation, full adaptive array processing without suffering its computation complexity (through the use of adaptive-adaptive array processing also called beam-space processing and eigenbeam processing). Finally, Space-Time Adaptive Array (STAP) for airborne platforms will be explained and related to the displaced phase center antenna (DPCA).

This course is intended for the engineer or scientist not familiar with phased-array antennas as well as the antenna specialist who wants to learn about other aspects of phased-array antenna systems. The major emphasis will be on the system aspects of phased-array systems.

Lecture #1. Monday March 14; Phased Fundamen-Arrav tals: **Fundamental** Principles of Electronically Scanned Array (ESA) explained with tube CO-BRA DANE used as example. Covered will be: Near and Far Field Definitions.

Phased Steering, Switched-Line Phase Steering; Time Delay Steering, Subarraying, Array Weightbedded Element, dual polarized circular wavequide element, advantage of triangular lattice over square lattice, Tour of COBRA DANE (6 stories high) via color slides.

PATRIOT UPGRADES

- 2012: \$400 M UPGRADE MADE IT 2012 STATE-OF-THE-ART: **US ARMY FIELDING TO 2048*** 2015: GaN AESA; 360° COV.**
- >200 BUILT
- 13 NATIONS
- 5000 EL PER/FACE
- C-BAND

(*FEB. 19, 2015/PRNEWSWIR1520E) MICROWAVE&RF, AUG 2015, P. 24)

Lecture #2. Monday March 21; **Linear Array Fun**damentals: Conditions for no grating beamwidth lobes: vs scan angle; sine space; Array Factor; sidelobe level vs antenna beamwidth: directivity; antenna efficiency

factors; array weightings; array frequency scanning; array bandwith.

TIGHTLY COUPLED DIPOLE ARRAY (TCDA)

- BANDWIDTH: 1:20
- THICKNESS: λ/40 AT LOWEST FREQ.
- DUAL POLARIZTION
- COLOCATED PHASE CENTERS
- GOOD POARIZATION IN DIAGONAL PLANE
- WAIM STRUCTURE

RAYTHEON TECHNOLOGY TODAY, 2014, ISSUE 1)

thinning system issues.

day March 28; Planar Arrays: Array Factor; array separability; sine-space (sinα-sinß space, Tspace); grating lobes location for triangular and rectangular lattice; directivity; very useful bell curve approximation; array

Lecture #3. Mon-

AIR & MISSILE DEFENSE RADAR (AMDR)

- S-BAND: AIR & MISSILE DEFENSE
- X-BAND: HORIZON SEARCH
- ADAPTIVE DIGITAL BEAM FORMING
- 30X > TARGETS THAN SPY-1D(V)
- 30X > SENSITIVE THAN SPY-1D(V)
- RADAR MODULAR ASSEMBLIES (RAMs) ARE BUIDING BLOCKS
- 4 TYPES OF LRUS PER RAM
- LRU REPLACED < 6 MIN
- GaN 34% < \$ THAN GaAs
- GaN HAS 108 HR MTBF
- COTS x86 PROCESSOR
- SCALABLE PICTURE COURTESY RAYTHEON

Lecture #4. Monday April 4; Array **Errors:** Effects of element phase and amplitude element errors and element failures: simple physical derivation of error effects; paired echo theory; subarray errors: quantization errors; examples.

ments: Waveguide; dipole; slotted waveguide; microstrip patch; stacked patch; notch (wideband); spiral; matching (wide-angle); waveguide simulator; practical limitations, mutual coupling and array blindness; scattering matrix; design procedure; , polarization miss-match loss.

Lecture #6. Monday May 9; Active Phased Arrays: 2nd generation solid state hybrid active electronically scanned array (AESAs) covered using PAVE PAWS as example, T/R Module Introduced, Cross Bent Dipole Element, Mutual Coupling, Array Blindness, Tour of PAVE PAWS (6 stories) via color slides. 3rd Generation AESAs: THAAD, SPY-3, IRIDIUM, F-15 APQ-63(V)2, APG-79, XBR, AMDR and upgraded Patriot GaAs and GaN microwave integrated circuits (Monolithic Microwave Integrated Circuit, MMIC).

CJR TEAM CELEBRATE A SUCCESSFUL FIRST LIVE-LAUNCH

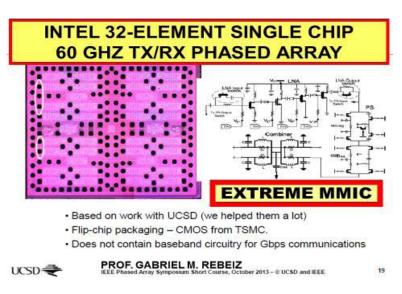
Lecture #7. Monday May 16; Array Feeds: Corpo-Reactive (lossless) and matched (Wilkinson); even/ odd node analysis. Serial; Ladder; Lopez; Blass; Radial, Butler matrix; microstrip/stripline;

Rotman Lens; SLQ-32; PATRIOT space-fed array; reflectarray. System Considerations: sequential detection, beam shape loss; receiver and A/D dynamic range; polarization miss-match loss; array noise figure and system temperature taking into account array mismatch. Phase Shifters: Diode switchedline, hybrid-coupled, loaded-line; ferrite phaseshifters: non-reciprocal latching; diode vs ferrite; MEMS (Micro-Electro-Mechanical Systems) and its potential for a low cost ESA.

Lecture #8. Monday May 23; Limited Scan (Limited Field of View [LFOV]) Arrays: Explained using simple high school optics for TPS-25, 1st Electronically Scanned Array (ESA) put in production. Fundamental Theorem specifying minimum number of A/D for every element channel; Raytheon develop-

phase shifters needed for a specified scan angle. Lecture #5. Monday April 25; Radiating Ele- Method for realizing this minimum using overlapped array antenna elements as with HIPSAF lens array system and Microwave Landing System (MLS); reflector; randomized oversized elements; use of sum and difference patterns; use of spatial filters to reduce grating lobes and sidelobes. Hemispherical Coverage Dome Antenna.

X-BAND 25K ELEMENT AESA AN/TPY-2



8 DELIVERED, 3 MORE ON ORDER.

#9. Lecture Monday June Phased Ar-6: **Amazing** ray Advances and **Breakthroughs** Part 1: Systems: Patriot now has GaN active electronically scanned array (AESA) providing 360o coverage, now a 2015 stateof-the-art AESA

rate and space fed; radar system; S/X-band AMDR provides 30 times the sensitivity and number of tracks as SPY-1D(V); JLENS aerostat radar system now deployed over Washington DC; 3, 4, 6 faced "Aegis" radar systems developed by China, Japan, Australia, Netherlands, USA; Low Cost, Low Power Extreme MMIC (Moore's law at Microwave and mm-waves): 4 T/R modules on single chip at X-band costing ~\$10 per T/R module; Intel single chip 32-Element 60 GHz Tx/Rx Phased Array, full phased array on wafer at 110 GHz; on-chip built-in-self-test (BIST), will be used in the internet-of-things and in cell phones which by 2020 is expected to number 50 billion, expect such single chip arrays to cost only few dollars in future; All the RF circuitry for mm-wave automobile radars at 25 GHz and 77 GHz are being put on a chip with some believing that such arrays and radars will soon be produced for just a few dollars; Valeo Raytheon (now Valeo Radar) developed low cost, \$100s, car 25 GHz 7 beam phased array radar; about 2 million sold already, more than all the radars ever built up to a very few years ago. Digital Beam Forming (DBF): Israel, Thales and Australia AESAs have under development array with an

ing mixer-less direct RF A/D having >400 MHz instantaneous bandwidth, reconfigurable between S and X-band; Radio Astronomers looking at using arrays with DBF. Materials: GaN can now put 5X to 10X the power of GaAs in same footprint, 38% less costly, 100 million hr MTBF, Raytheon invested \$150 million to develop GaN; SiGe for backend, GaN for front end of T/R module. MIMO (Multiple Input Multiple Output): Where it makes sense; contrary to what is claimed MIMO array radars do not provide 1, 2 or 3 orders of magnitude better resolution and accuracy than conventional array radars; MIMO does not provide better barrage-noise-jammer, repeater-jammer or hot-clutter rejection than conventional array radars; contrary to claims MIMO

should not provide better minimum detectable velocity for airborne radars.

Sidelobe Cancellers (SLC): The simple single-loop, feed-forward canceller is introduced in easy terms. This is followed by a discussion of the simple single-loop feedback canceller with and without hard limiting. The normalized feedback SLC will also be covered. Presented will be their performance; transient response and cancellation ratio. Next the multiple-loop SLC (MSLC) will be covered. Applied to the MSLC will be the Gram-Schmidt, Givens and Householder orthonormal transformation methods. Systolic array implementations will be given.

Lecture #10. Monday June 13; Fully Adaptive Arrays: The optimum weight for a fully adaptive array is developed using a very simple deriva-

tion. Methods for calculating this optimum weight are given using the Sample Matrix Inversion (SMI) algorithm, the Applebaum-Howells adaptive feedback loop method, a recursive method, and Gram-Schmidt, Givens and Householder orthonormal transformations developed for the tracking problem and for the MSLC. The use of eigenvector beams and a whitening filter will also be developed. It will be shown how the latter reduces the transient response. Methods for obtaining the benefits of a fully adaptive array without its high computation and large transient time disadvantages are given. These are the adaptive-adaptive array processing procedures, the use of eigenbeam space, and the method of finding the largest eigenvalues and in turn their eigenbeams. The STAP algorithm will be introduced.

Phased Array Amazing Advances and Breakthroughs -- Part 2: Metamaterials: Material custom made (not found in nature): using 20 and 30 GHz metamaterial electronically steered antennas about the size of a laptop developed for transmission to satellites and back was demonstrated December 2013, goal is \$1K per antenna, remains to prove low cost and reliability, how this antenna works explained for first time; 2-20GHz stealthing by absorption simulated using <1 mm coating; target made invisible over 50% bandwidth at L-band; Focus 6X beyond diffraction limit at 0.38 µm; 40X

diffraction limit, λ /80, at 375 MHz; In cell phones provides antennas 5X smaller (1/10th λ) having 700 MHz-2.7 GHz bandwidth; The Army Research Laboratory in Adelphi MD has funded the develop-

ment of a low profile metamaterial 250-505 MHZ able from 8-12 GHz; MEMS Piezoelectric Material antenna having a $\lambda/20$ thickness; Provides isolation between antennas with 2.5 cm separation equivalent to 1 m separation; used for phased array WAIM; n-doped graphene has negative index of refraction, first such material found in nature; Digital Processing and Moore's Law: Not dead yet; Slowed down but has much more to go; Expect increase in transistors density by about a factor of ~50 in the next 30 years and reduction in signal processing power consumption by factor of ~75; and then there is graphene which has potential for terahertz transistor clock speeds, manufacture on CMOS demonstrated, could allow Moore's law to march forward using present day manufacturing techniques; there is also spintronics which could revolutionize the computer architecture away from the John von Neumann model; and there is finally doing computation the way the brain efficiently and amazingly does perhaps by using synaptic transistors and/or memristors, remember the brain only weighs about 2-3 pounds and uses only ~20 W, we have a long way to go; Low Cost Packaging: Raytheon funding development of low cost flat panel X-band AESA using COTS type printed circuit boards (PCBs); Rockwell Collins doing it for airborne AESA; Lincoln-Lab./MA-COM developing low cost S-band flat panel array using PCBs, overlapped subarrays and a T/R switch instead of a circulator; SAR/ISAR: Principal Components of matrix formed from prominent scatterers track history used to determine target unknown motion and thus compensate for it to provide focused ISAR image. Technology and Algorithms: A dual polarized, low profile, $(\lambda/40)$, wideband (1:20) antenna can be built using tightly coupled dipole antennas (TCDA); Lincoln Lab increases spurious free dynamic range of receiver plus A/D by 40 dB; MEMS: reliability reaches 300 billion cycles without failure; Has potential to reduce the T/R module count in an array by a factor of 2 to 4; Can provide microwave filters 200 MHz wide tun-

= piezoMEMS: Enables flying insect robots; Printed Electronics: Low cost 1.6 GHz (goal 2.4 GHz) diodes printed with Si and NbSi2 particles; Electrical and Optical Signals on Same Chip: IR beams could be used for transporting on computer chips digital information at the speed of light; COSMOS: DARPA revolutionary MMIC program: Allows integration of III-V, CMOS and opto-electronics on one chip without bonded wires leading to higher performance, lower power, smaller size, components; Graphene and Carbon Nanotube (CNT): potential also for non-volatile memory, flexible displays and camouflage clothing, self-cooling, IBM producing 200 mm wafers with RF devices; Superconductivity: We may still achieve superconductivity at room temperature; Superconductivity recently obtained for first time with iron compounds; Biodegradable Array of Transistors or LEDs: Imbedded for detecting cancer or low glucose; can then dispense chemotherapy or insulin; Quantum Radar: See stealth targets; New polarizations: OAMs, (Orbital Angular Momentum) unlimited data rate over finite band using new polarizations?? Bio: Biodegradable array of transistors or LEDs for detecting cancer or low glucose, can then dispense chemotherapy or insulin; Can now grow functioning non-rejecting kidney and heart for rats.

Decision (Run/Cancel) Date for this Courses is Wednesday, March 7, 2016

Payment received by March 3

IEEE Members \$300 Non-members \$340

Payment received after March 3

IEEE Members \$340 \$370 Non-members

Your registration includes: 1 textbook

15 reprints

copies of over 800 vugraphs

To Register, http://ieeeboston.org/event/phased-array-and-adaptive-array-fundamentals-andtheir-recent-advances-spring-2016

Software Development for Medical Device Manufacturers - An intensive two-day course

Time & Date: 8:30AM - 4:30PM; Wednesday & Thursday, March 30 & 31, 2016

Location: Crowne Plaza Hotel, 15 Middlesex Canal Park Road, Woburn, MA

Speaker: Steven Rakitin, Quality Software Consulting

SUMMARY:

Developing software in compliance with FDA, EU regulations and international standards is challenging. This two-day intensive course provides practical guidance and suggestions for developing software that complies with applicable FDA and EU regulations, guidance documents and international standards such as IEC 62304 and ISO 14971. The focus of this course is interpreting Design Controls for software. Each section of the Design Controls regulation (820.30) is discussed from the software perspective. Corresponding requirements from IEC 62304 are woven into the flow.

In-depth discussion of critical topics such as Requirements, Software Verification & Validation, Risk Management and Fault Tree Analysis are included. In addition, techniques for validating software development tools and software used in Manufacturing and Quality Systems are also discussed. Interactive group exercises are included to facilitate discussion and learning.

WHO SHOULD ATTEND

Software and firmware engineers, software managers, RA/QA staff, validation engineers, and project managers. Anyone interested in learning how to develop medical device software in compliance with regulations, standards and guidance documents.

COURSE OUTLINE

Introduction

- Medical Device Definitions FDA and EU
- Regulatory Roadmap and FDA/EU Device Classification Schemes
- FDA Regulations and Guidance Documents for Software
- Standards ISO 13485, IEC 62304, ISO 14971, EN-14971, IEC 60601, and IEC 62366-1
 - All Software is Defective

Interpreting Design Controls for Software

- Software Development Models
- Design and Development Planning
- Design Inputs
 - About Requirements...
 - Requirements Exercise
- Design Outputs
- Design Reviews
- Design Verification
 - Software Verification Techniques
- Design Validation
 - Software Validation Process
 - Validation Exercise
- Design Transfer
- Design Changes
- Design History File

Validation of...

- Software Tools used to develop Medical

Device Software

- Software used in Manufacturing
- Software used in Quality Systems

Risk Management

- Standards and Regulations
- Terms and Concepts
- Risk Management Process
- Risk Management Tools and Techniques
 - Fault Tree Exercise
- Data Collection and Analysis
- Documentation Requirements
- Summary
- Comprehensive reference materials included

He received a BSEE from Northeastern University and an MSCS from Rensselaer Polytechnic Institute. He earned certifications from the American Society for Quality (ASQ) as a Software Quality Engineer (CSQE) and Quality Auditor (CQA). He is a Life Senior member of IEEE and a member of MassMEDIC.

He is on the Editorial Review Board for the ASQ Journal Software Quality Professional.

As President of Software Quality Consulting Inc., he helps medical device companies comply with FDA regulations, guidance documents, and international standards in an efficient and cost-effective manner.

Speaker Bio:

Steven R. Rakitin has over 40 years experience as a software engineer and software quality manager. He helped write the first IEEE Software Engineering Standard (IEEE-STD-730 Standard for Software Quality Assurance Plans) as well as the current revision IEEE 730-2014. He is also a member of the working group writing IEEE Standard 1012 (System Verification & Validation). He has written several papers on medical software risk management as well as a book titled: Software Verification & Validation for Practitioners and Managers.

Decision (Run/Cancel) Date for this Courses is Monday, March 21, 2016

Payment received by March 3

IEEE Members \$465 Non-members \$495

Payment received after March 3

IEEE Members \$495 Non-members \$545

To Register, http://ieeeboston.org/event/software-development-for-medical-device-manufacturers-spring-2016

Antennas and Propagation for Wireless Communications

Time & Date: 6:30 - 9PM; Tuesdays, March 22, 29, April 12, 19, 26, May 3, 10, 17

Crowne Plaza Hotel, 15 Middlesex Canal Park Road, Woburn, MA Location:

Speaker: Dr. Steven R. Best, MITRE Coprporation

Please Register Now !!!!

Last Notice Before Course Begins,

Summary: This course provides participants with comprehensive coverage of a wide variety of antenna and propagation topics. The course provides an understanding of basic antenna property definitions, antenna design fundamentals and considerations, numerous antenna types and RF propagation fundamentals. The course also provides an overview of how antenna properties and propagation characteristics affect communication system performance. Topics covered include fundamental antenna performance properties, antenna specifications and data sheets, basic antenna types, elementary antennas, electrically small antennas, wireless device antennas, medical device antennas, low profile antennas, aperture and reflector antennas, circular polarized antennas, antenna arrays, propagation channel characteristics, antenna diversity and MIMO, and an overview of different antennas used in today's wireless communication systems and markets.

Learning Objectives:

Upon completing the course, the participant will be able to:

- Understand the concepts associated with antenna performance, operation and classification.
- Understand, evaluate and define antenna performance specifications.
- Describe and understand a broad spectrum Part 1: of antenna types.
- Illustrate antenna operating principles with a factual knowledge of antenna theory.

- Understand the basic performance trade-offs associated with antenna design.
- Understand how to design basic antenna elements.
- Understand basic principles associated with the implementation of antenna arrays.
- Understand and describe how antenna performance and the RF propagation environment impact wireless communication system performance.
- Understand the basic types of antennas that are used in today's wireless communications markets.

Target Audience: Anyone working within the field of general RF systems, wireless, cellular and microwave systems will benefit from this comprehensive coverage of antenna properties and design. The course is well suited for design engineers and program managers who require an understanding of antenna principles and design concepts. Basic mathematical and computing skills are a prerequisite for this course. An electrical engineering background or equivalent practical experience is recommended but not required.

Outline:

Basic RF Concepts

• Review of fundamental RF Concepts • Basic design and performance requirements of a wireless

communication system

Basic Antenna Concepts

• Definitions of basic antenna properties: impedance, VSWR, bandwidth, directivity, gain, radiation patterns, polarization, etc.

Types of Antennas

• Resonant antennas • Traveling wave antennas • Frequency Independent antennas • Aperture antennas • Phased arrays • Electrically small antennas • Circularly polarized antennas

Classification of Antenna Types

• By frequency • By size • By directivity

Fundamental Antenna Elements

• The monopole • The dipole • The loop • The folded dipole • The slot

Microstrip Antennas

• Element types • Microstrip element design • Design trade-offs • Designing and 802.11 microstrip patch

Baluns

Ground Plane Considerations

Vertically polarized antennas • horizontally polarized antennas • The impact of the surrounding environment on antenna performance

Part 2:

Circularly Polarized Antennas

Achieving circular polarization
 The helix antenna
 The crossed dipole antenna
 The microstrip patch
 The quadrifilar helix

Aperture Antennas

Aperture design concepts
 The horn antenna
 The reflector antenna
 The corner reflector Impedance Matching

Impedance matching networks

Broadband Antennas

- Monopole configurations Feed considerations
- Dipole configurations Bandwidth improvement techniques

Frequency Independent Antennas

- The log-periodic antenna
 The spiral antenna
 Electrically Small Antennas
- Impedance, bandwidth and quality factor of antennas
 Defining electrically small
 Fundamental

performance limitations • The small dipole • The small loop • Design and Optimization of small antennas

Part 3:

Antenna Arrays

Fundamental array theory • Types of antenna arrays • Feed network design considerations • Beam steering and shaping concepts • Performance trade-offs • Microstrip patch arrays • Dipole element arrays

Friis Equation and Link Budget

 The communication link • Understanding and calculating path loss • Receiver Sensitivity and antenna noise figure • Link budget calculations

Receiving Properties of Antenna

 How does an antenna capture power • Aperture area and efficiency • Coupling between antennas

Fractal Antennas

Fractal antenna types
 Performance properties of fractal antennas

RFID Antennas

 RFID system basics • Performance properties of RFID antennas

Ultra Wideband (UWB) Antennas

Time domain considerations in antenna design •
 Antenna performance requirements in UWB systems

Low Profile Antennas

The inverted L and inverted F antennas
 The planar inverted F antenna (PIFA)

Device Integrated Antennas

Antennas commonly used in wireless device applications

Part 4:

Propagation Channel Considerations

RF path loss • Reflection, multipath and fading •
 Noise and interference • Polarization distortion •
 Diversity implementation • MIMO

Types of Antennas used in Communications Systems

Wireless base station antennas
 Wireless handset and portable device antennas
 GPS antennas
 HF, UHF and VHF communication antennas
 Earth station and satellite communication antennas

Numerical Modeling of Antennas

Software packages • Comparison with measurements

Antenna Design and Simulation Examples Using Commercial Antenna Design Software

Speaker Bio: Steven R. Best is a Senior Principal Sensor Systems Engineer with the MITRE Corporation in Bedford, MA. He received the B.Sc. Eng and the Ph.D. degrees in Electrical Engineering in 1983 and 1988, respectively, from the University of New Brunswick in Canada. Dr. Best has over 28 years of experience in business management and antenna design engineering in both military and commercial markets. Prior to joining MITRE, Dr. Best was with the Air Force Research Laboratory (AFRL) at Hanscom AFB, where his research interests included electrically small antennas, wideband radiating elements, conformal antennas, antenna arrays and communications antennas. Prior to joining AFRL, he was President of Cushcraft Corporation in Manchester, NH from 1997 to 2002. He was Director of Engineering at Cushcraft from 1996 to 1997. Prior to joining Cushcraft, he was co-founder and Vice President and General Manager of Parisi Antenna Systems from 1993 through 1996. He was Vice President and General Manager of D&M/ Chu Technology, Inc. (formerly Chu Associates) from 1990 - 1993. He joined Chu Associates as a Senior Electrical Engineer in 1987.

Dr. Best is the author or co-author of 3 book chapters and over 100 papers in various journal, conference and industry publications. He frequently presents a three-day short course for the wireless industry titled "Antennas and Propagation for Wireless Communication", he is the author of a CD-ROM series on antenna theory and design, and he has presented several Webinars on antenna topics. He has also authored an IEEE Expert Now module on electrically small antennas. Dr. Best is a former Distinguished Lecturer for IEEE Antennas and Propagation Society (AP-S), a former member of the AP-S AdCom, a former Associate Editor for the IEEE Transactions on Antennas and Propagation, and Senior Past Chair of the IEEE Boston Section. He is also a former Editor-in-Chief for AP-S Electronic Communications. Dr Best is a Fellow of the IEEE and a Past-President of the IEEE Antennas and Propagation Society.

Decision (Run/Cancel) Date for this Courses is Friday, March 11, 2016

Payment received by March 8

IEEE Members \$425 Non-members \$455

Payment received after March 8

IEEE Members \$455 Non-members \$475

To Register, http://ieeeboston.org/event/antennas-and-propagation-for-wireless-communications

Co-sponsors:

Call for Participants

The 15th annual IEEE Symposium on Technologies for Homeland Security (HST $^{\prime}$ 16), will be held 10 – 12 May, in the Greater Boston, Massachusetts area. This symposium brings together innovators from leading academic, industry, business, Homeland Security Centers of Excellence, and government programs to provide a forum to discuss ideas, concepts, and experimental results.

Produced by IEEE with technical support from DHS S&T, IEEE, IEEE Boston Section, and IEEE-USA and organizational support from MIT Lincoln Laboratory, Raytheon, Battelle, and MITRE, this year's event will once again showcase selected technical paper and posters highlighting emerging technologies in the areas of:

Cyber Security	Biometrics & Forensics
Land and Maritime Border Security	Attack and Disaster Preparation, Recovery and Response

We are currently reviewing and finalizing the technical paper, poster and tutorial session submissions in each of the areas noted above. Accepted papers will focus on technologies with applications available for implementation within about five years. All areas will cover the following common topics:

- Strategy and threat characterization, CONOPs, risk analysis,
- Modeling, simulation, experimentation, and exercises & fraining, and
- Testbeds, standards, performance and evaluations.

Contact Information

For more detailed information on the Technical Program, as well as Sponsorship and Exhibit Opportunities, visit the website: http://ieee-hst.org/ or email: information@ieee-hst.org. We expected the technical program to be posted online no later than March 1, 2016

Organizing Committee

General Chair:
Deputy Chair:
Technical Co-Chair:
Tutorials Chair:
Business Program Chair:
Local Arrangement Chair:
Marketing Chair:
Publications Chair:
Sponsorship/Exhibits Chair:
Special Advisor to the Chair:
Registration Chair:

James Flavin, MIT Lincoln Laboratory
Fausto Molinet, Matrix Internationale
Gerald Larocque MIT Lincoln Laboratory
Anthony Serino, Raytheon
Andrea Marsh, Battelle
Bob Alongi, IEEE Boston
Jessica Patel, Raytheon
Adam Norige, MIT Lincoln Laboratory
Fausto Molinet, Matrix Internationale
Lennart Long, EMC Consultant
Karen Safina. IEEE Boston

Technical Program Committee Chairs

Attack and Disaster Preparation, Recovery and Response

Lance Fiondella, UMass, Dartmouth

Kenneth Crowther, MITRE

Biometrics & Forensics

Eric Schwoebel, MIT Lincoln Laboratory James L. Wayman, San Jose State University

Land and Maritime Border Security

Karen Panetta, Tufts University

Rich Moro, Raytheon

John Aldrige, MIT Lincoln Laboratory

Cyber Security

David Balenson, SRI International

Emily Frye, MITRE