

The <u>Digital</u> Reflector

PUBLISHED BY THE BOSTON SECTION OF THE INSTITUTE OF ELECTRICAL AND ELECTRONICS ENGINEERS, 8,000 MEMBERS STRONG!

http://www.ieeeboston.org

Free Technical Meetings

Paper Reviewed Conferences!

State-of -the -Art Professional Development Courses

Online Course Listing	<u>Page 3</u>
January Editorial, "The Fog of Innovation" by Kevin Flavin, 2016 Chair, IEEE Boston Section	n <u>Page 4</u>
IEEE Boston Section Social Media Links	<u>Page 5</u>
2016 IEEE International Symposium on Phased Array Systems and Technology	<u>Page 6</u>
Entrepreneurs' Network	<u>Page 7</u>
Robotics & Automation Society	<u>Page 8</u>
Life Members	<u>Page 10</u>
Reliability Society	<u>Page 11</u>
Photonics Society	<u>Page 12</u>
Entrepreneurs' Network	<u>Page 12</u>
Computer Society	<u>Page 14</u>
Consultants' Network	<u>Page 15</u>
Geoscience and Remote Sensing Society	<u>Page 15</u>
IEEE Boston Section Social Media Links	<u>Page 16</u>
Introduction to Embedded Linux	<u>Page 17</u>
Call for Course Speakers/Organizers	<u>Page 19</u>
2016 IEEE International Symposium on Phased Array Systems and Technology(Submission Deadline: February 1, 2016)	<u>Page 20</u>
2016 IEEE High Perfromance Extreme Computing Conference (HPEC)(Submission Deadline: May 16, 2016)	<u>Page 21</u>
2016 IEEE International Symposium on Technologies for Homeland Security(Submission Deadline: January 4, 2016)	<u>Page 22</u>
Introduction to Embedded Android	<u>Page 23</u>
Advanced Embedded linux Optimization	<u>Page 25</u>
Flexible Electronics - Packaging Design, and Materials Analysis for Aerospace, Military, Medical and High-end Consumer Products	<u>Page 27</u>
Phased-Array and Adaptive-Array Fundamentals and their Recent Advances	<u>Page 28</u>
Software Development for Medical Device Manufacturers	Page 33
Antennas and Propagation for Wireless Communications	Page 35

EXHIBITION SPACE NOW AVAILABLE

Electronic Design Innovation Conference

Workshops & Exhibition

September 20-22

Hynes Convention Center **Boston, MA**

www.EDICONUSA.com

An Industry Driven Event

Serving the RF, microwave, EMC/EMI

and
high-speed
design industry

Call for Papers Coming Soon!

IEEE Boston Section Online Courses:

Verilog101:Verilog Foundations

CLASS DESCRIPTION: Verilog is IEEE standard 1364. It is a Hardware Description Language that is the corner stone of much of the simulation world. Verilog Foundations is a comprehensive introduction to the IEEE 1364 (Verilog). The Verilog Foundations class has a slightly different approach to learning Verilog than other methods. There is a lecture section for each main topic. This presents a basic foundation for the language. There are nearly 100 labs/examples giving comprehensive "how to" examples of most Verilog language constructs. There are working solutions for each lab. All the work can be done independently by the engineers, at their own computer, and at their own pace. Register at http://www.ieeeboston.org and click on course title

System Verilog 101: Design Constructs

CLASS DESCRIPTION: SytemVerilog is an extensive set of language constructs to the IEEE 1364-2001 standard. It's meant to aid in the creation and verification of models. There are over 100 labs/ examples giving comprehensive "how to" examples of most System-Verilog language constructs. There are working solutions for each lab and the students can use the lab database for developing their own models later. The class is also self paced. All the work can be done independently by the engineers, at their own computer, and at their own pace. There are self-grading quizzes for each chapter that allow the student to see if he/she is learning the material. The lab database you will be able to download and is yours to keep. Register at http://www.ieeeboston.org and click on course title

System Verilog 102: Verification Constructs

CLASS DESCRIPTION: SytemVerilog is an extensive set of language constructs to the IEEE 1364-2001 standard. It's meant to aid in the creation and verification of models. SV102, this class, covers verification constructs. SystemVerilog102, like all CBE classes, is lab based. There are over 30 verification labs/examples giving comprehensive "how to" examples of most SystemVerilog verification language constructs. The class is also self paced. All the work can be done independently by the engineers, at their own computer, and at their own pace. Register at http://www.ieeeboston.org and click on course title

Introduction to Embedded Linux Part I

CLASS DESCRIPTION: This first of a 2-part series introduces the Linux Operating System and the use of Embedded Linux Distributions. The course focuses on the development and creation of applications in an Embedded Linux context using the Eclipse IDE. The first part of the course focuses on acquiring an understanding of the basic Linux Operating System, highlighting areas of concern for Embedded Linux applications development using Eclipse. The latter part covers the methods for booting Embedded Linux distributions including embedded cross-development and target board considerations. Register at http://ieeeboston.org

High Performance Project Managment

CLASS DESCRIPTION: This12 hour course(broken into short 10 to 20 minute independent modules) provides the project methodology, concepts, and techniques that ensure successful completion (on time, on budget, with the quality required) of projects, large and small. Participants learn the steps to take before, during, and at the end of a project to hone planning and execution to a strategically built process that delivers project success when used.

Register at http://ieeeboston.org

The Fog of Innovation

Kevin Flavin, 2016 Chair, IEEE Boston Section

It is January for you.

As of this writing, Samsung has agreed to pay Apple a half-billion \$US to settle claims of misuse of intellectual property. Fed Chair Yellen and the Federal Reserve are threatening to raise rates in December. **Terrorism** continues to evolve into new forms, fuel

prices are dropping, the USD is stronger, personal drones are getting cheaper, and the will Chinese Yuan become a reserve currency in months.

Does Samsung's agreement signal a time of technical dust settling? Intellectual Property claims are getting straightened out, the great 'who owns what, where and when' is being decided. Is this an indication that massive innovation has slowed?

We are in the midst of digesting the changes in technology, and this inevitably improves our economic productivity. With productivity gains, we should see an increase in the economic production and expansion. It usually does. Hopefully. But is this time different; is this why Fed Chair Yellen has decided (with the other Fed Directors) to increase rates? Will this be the trigger for another recession? Only our future selves will know.

In addition to being an engineer, I am a marketer, so I listen to different wires than a typical engineer or scientist. On an immediately local level, Constant

It is November for me. Contact was scooped up - and so begins the consolidation of technology companies on the margins of industry. Meanwhile, a few hundred miles away, Yahoo is deciding to spin-out a part of their business. Naturally, since an ex-Googler is running the ship there, there is a strong impulse to compare to Google and ask, "What would Google do?" Let the second-guessing begin!

> This may be the pessimist speaking but these are all indicators of dust settling - reorganizing - re-categorizing - wealth creation without technical creation. I can't help but think about Richard Gere's Edward Lewis (Pretty Woman) piling up the glasses from the conference table dreaming of building ships.

> On the other hand, we may still be in the fog and haze of an innovation cycle. A little more than ten years ago, Apple launched the non-Mac-only iPod. A little more than eight years ago, the iPhone was launched - and we are still innovating on that platform and similar. Notably, the use of an iPhone and other smart phones to control devices, i.e. drones, may be the next phase of innovation. Smart Phones as platforms for innovations in robotics, virtual reality and augmented reality seems like a natural next step. If Facebook users can manage a farm in a game, how far away is the idea of combining a game with augmented reality and 'Internet of Things' for real gamers to manage small crops (maybe without them realizing?). Is this the first step to The Matrix, where we are the overlords of...ourselves?

> Considering the increasing impact of technology innovation on that last 30-40 years, we can see specific points of innovation that caused massive economic impact, e.g. the digital computer, personal computer, mobile phone, public access to the in

to have a diminishing level of impact.

If the current trend continues, will our massive in- Maybe we need to believe that every little innovanovations hide amongst the news and distractions, only to be discovered by accident, over a longer pe- now, or soon, or substantively, but it does. It does riod of time, as the innovations become part of the matter. fabric of our normal lives, possibly becoming the tion' come from the use of the innovations? Will the responsibility. Our work matters. You matter. 'innovation' be solving problems of an environmental impact of humanity? Will a human flight to Mars So, welcome to 2016. I hope your 2016 builds on spark the next wave of innovation: in propulsion, energy development and use, agriculture, human you can build on next year. All the best of luck and behavior, and poetry and literature? Or maybe, like good fortune to you. today, the massive innovations of the past where

ternet, GPS, cheap batteries, solar cells, etc. Each simply trying to solve an unrelated or smaller probsuccessive innovation, building on the past, seems lem? Maybe the creation of the digital computer was simply (but not simple) to solve the need for radar to look beyond the horizon?

tion, no matter how periphery, matters. Maybe not

'platform' for further innovation? Will innovations Where are you on the innovation arc? Do you forehappen and we won't even notice? Will innovations see the impact your work is creating for the future? be incremental, take the form of platforms for mak- We're engineers and scientists - working toward the ing the changes we need to do? Will the 'innova- future is what we do, we are very lucky to hold that

last year. I hope your next year is something that

IEEE Boston Section Social Media Links:

Twitter: https://twitter.com/ieeeboston

Facebook: https://www.facebook.com/IEEEBoston

YouTube: https://www.youtube.com/user/IEEEBostonSection

Google+: https://plus.google.com/107894868975229024384/

LinkedIn: https://www.linkedin.com/groups/IEEE-Boston-Section-3763694/about

CALL FOR PAPERS Dates Extended

2016 IEEE International Symposium on

Phased Array Systems and Technology

Revolutionary Developments in Phased Arrays

Sponsors

Platinum

Raytheon

Gold

Suggested Topics:

- Aperture Design
- Antenna Elements
- Beamforming Techniques
- T/R Modules
- Signal Processing for Arrays
- Array Measurements
- Packaging and Manufacturing
- **Applied Computational Electromagnetics**

Westin Waltham Hotel, Greater Boston, Massachusetts, USA www.array2016.org

18-21 October 2016

About the Symposium

Phased array systems continue to be a rapidly evolving technology with steady advances motivated by the challenges presented to modern military and commercial applications. This symposium will present the most recent advances in phased array technology and present a unique opportunity for members of the international community to interact with colleagues in the field of Phased Array Systems and Technology.

Silver

Bronze

Banquet Sponsor

Technical Co-Sponsors

- System Architecture

- **Advanced Materials**

Special Sessions

Please provide suggestions for special sessions to the Technical Program Chair at info@array2016.org

Paper Template and Submission Procedures

Template and submission procedures are available at www.array2016.org/forauthors.htm

Publication Information

All accepted papers will be published on the conference CD-ROM and distributed to conference attendees. Selected papers meeting the publishing requirements will be published in IEEE Xplore as part of the IEEE Conference Publication Program.

Important Dates:

Summary (~1000 words + figures)	01 Feb 2016
Notification of Acceptance	15 Mar 2016
Final Papers (8 page max)	01 Jul 2016

Conference Committee

Conference Chair:

Jeffrey S. Herd,

MIT Lincoln Laboratory (MIT LL)

Vice Chair:

William Weedon, Applied Radar

Honorary Chair:

Eli Brookner, Raytheon (retired)

Technical Program Chair:

Alan J. Fenn, MIT LL

Technical Program Vice Chair:

Wajih Elsallal, MITRE

Special Sessions Chair:

Sean Duffy, MIT LL

Plenary Session Chairs:

David Mooradd, MIT LL Eli Brookner, Raytheon (retired)

Tutorials Chairs:

Jonathan Williams, STR Jonathan Doane, MIT LL

Student Program Chairs:

Bradley T. Perry, MIT LL Justin Kasemodel, Raytheon

Secretary:

Duane J. Matthiesen, Technia

International Liaison:

Alfonso Farina, Selex (retired)

Exhibits Chair:

Dan Culkin, SRC, Inc.

Publicity Chairs:

Glenn Meurer, MITRE Don McPherson, SRC, Inc.

Social Media Chair:

Gregory Charvat, Humatics, Inc.

Publications Chairs:

Raoul Ouedraogo, MIT LL Will Moulder, MIT LL

Poster Sessions Chairs:

Greg Arlow, Lockheed Martin Mark McClure, STR

Sponsorships Chair:

William Weedon, Applied Radar

Local Arrangements/Finance:

Robert Alongi, IEEE Boston

Website:

Kathleen Ballos, Ballos Associates

Advisors:

Ellen Ferraro, Raytheon Robert J. Mailloux, Arcon Hans Steyskal, Arcon Chris McCarroll, Raytheon

v.19

Entrepreneurs' Network - 6:30PM, Tuesday, 5 January

Product Development in Life Science & High Tech Startups

Whether you want to sell a new kind of vehicle or a new app, you've got to develop your idea into a real product that customers are willing to pay for. Do you try to develop the product in house or do you outsource the development? How do you fund your product development? How do you make sure you're developing the right product for your market?

The panelists have broad and deep experience in developing many different types of products in life sciences and high tech fields and will offer guidance in matching your product to your market, practical suggestions for making the most of your development budget, and effective advice for avoiding product development pitfalls. And share a few stories from their own product development adventures. One of our speakers is a serial entrepreneur, inventor and Founder of a product development company focused on high tech fields, another is serial entrepreneur and CEO and angel investor in a broad array of life science ventures and our third speaker is a co-founder, co-inventor and CEO of a company that developed a product from scratch that it has successfully commercialized, building a team and obtaining investment along the way. Our moderator is a recognized attorney for startup companies and is the ENET

Chairman. Speaker: Steve Owens, founder of Finish Line PDS (www.finishlinepds.com)
Steve has over 30 years of successful product development experience in many different industries and is a sought-after adviser and speaker on the subject. Steve has founded four

successful start-ups and holds more than twentyfive patents. Steve has worked for companies such as Halliburton and Baker Hughes. He has experience in the Internet of Things, M2M, oil and gas, and industrial controls. Steve's insight into the product development process has generated millions of dollars in revenue for start-ups and small businesses. Finish Line PDS provides product and technology development management, mechanical design, and development of electronics, firmware and sensors, as well as design verification testing and other services. Finish Line PDS is a proud sponsor of the Boston ENET. https://twitter.com/FinishLine_PDS

Speaker: Richard Gill, PhD, Board Director and Investor, Launchpad Venture Group

http://launchpadventuregroup.com/

Dr. Gill is a seasoned entrepreneur, CEO, investor, and board member. He is a longtime investor and direc-

tor at Launchpad Venture Group, the largest angel investing group in the Northeast. Dr. Gill is active on the board of several startups. Dr. Gill's most recent operational role was President & CEO of TruTouchTechnologies, an alcohol testing and biometric device company, where he remains a board member. Prior to that he has been President & CEO at Genome Therapeutics, ActiveCyte, AnVil, Signet and ProNAi. He also held executive positions at Unilever and British Technology Group. He has executed business strategies, moved candidates into clinical trials, overseen M&A activities and much more. His degrees are inPhysiology and Biochemistry, Chemistry plus a PhD in Endocrinology.

Speaker: Molly Farison, Co-founder and CEO at Lilypad Scales, http://www.lilypadscales.com
Molly is an experienced electrical engineer and product developer with significant product development history. She has experience in consum-

er and healthcare markets working with factories in topics and author of numerous articles published the U.S. from starting her present company, Lilypad Scales, which developed from scratch a functional and durable product with 5-star reviews on Amazon.com. Molly also led two capital raises and gave presentations that landed her company a spot in MassChallenge in 2013 and won the Babson BETA Challenge (\$20k prize) in 2014. Molly manages an interdisciplinary team that has included engineers. doctors, salespeople, and graphic designers. Molly had prior work experience at Altaeros Energies, Rockwell Automation and NASA. She graduated Olin College of Engineering, with a B.S., Electrical and Computer Engineering, and was co-inventor on the patent relating to Lilypad Scales' first product, the Lilypad Scale for Manual Wheelchairs.

Moderator: Robert Adelson, business and tax attorney, partner at Boston law firm of Engel & Schultz LLP (www. ExecutiveEmploymentAttorney.com), and Chairman of IEEE Boston Entrepreneurs' Network. Rob has been an attorney for over 30 years specialized in business, tax, stock and options,

employment, contracts, financings, trademarks and intellectual property. Rob began as an associate at major New York City law firms before returning home to Boston in 1985 where he has since been a partner in small and medium sized firms before joining his present firm in 2004. Rob represents entrepreneurs, start-ups and small companies, independent contractors and employees and executives. Rob is a frequent speaker on business law ter, you are welcome to register at the door.

in Boston Business Journal, Mass High Tech and other publications. He has been named among the "Top 20 Boston Startup Lawyers" by Chubby-Brain.com, a website that provides tools for entrepreneurs. Rob has been on the ENET Board since 2002 and Chairman since 2009 and is also a Co-Founder and Board member of the 128 Innovation Capital Group. He holds degrees from Boston University, B.A., summa cum laude, Northwestern University (Chicago), J.D., Law Review, and New York University, LL.M. in Taxation.

Meeting Location: Constant Contact, Inc., Reservoir Place, Main Building InnoLoft Great Room, 1st Floor, 1601 Trapelo Rd., Waltham, MA (Exit 28B, I-95/Route 128)

Pre-meeting Dinner at 5:15 PM (sharp) at Bertucci's, Waltham, (Exit 27B, Route 128) Check for Updates at: Boston Entrepreneurs' Network Website at (http://www.boston-enet.org). Directions: http://www.constantcontact.com/aboutconstant-contact/office-location-waltham.jsp

Reservations: ENET Constant Contact meetings are free to ENET members and \$20 for nonmembers. No reservations are needed for the dinner. To expedite sign-in for the meeting, we ask that everyone -- members as well as nonmembers -- pre-register for the meeting online. Pre-registration is available until midnight the day before the meeting. If you cannot pre-regis-

Robotics and Automation Society - 6:00PM, Tuesday, 12 January

Development of "CorPath", the first surgical robot in production for Percutaneous Coronary Intervention, and the constructive methods used in its design

Dr. Nicholas Kottenstette & Brett Prince

Minimally invasive surgical robotic systems are percutaneous coronary intervention (PCI) System typically classified as Class II medical devices by cleared by the FDA. As such, the CorPath has the FDA. The CorPath is the only robotic-assisted cleared a rigorous verification and validation pro9

cess in order to achieve FDA approval. This process includes verifying the embedded control software used to control the robotic drive system.

Model based methods are presently being used to both simulate and deploy control software for our next generation robotic systems. Specifically the embedded control software has been derived using constructive methods in order to provide rigorous stability analysis which can be verified in deployment. We shall first provide an overview of Corindus Vascular Robotics and its flagship CorPath product. We shall then provide a more general discussion on how constructive methods can be used for networked control of robotic systems.

Constructive methods typically exploit physical properties of the system in order to construct low complexity controllers which in practice are easy to tune and robust to system uncertainty. Typically the discrete time implementation of the respective control system can be achieved at modest sampling rates. However, when lower sampling rates and significant time varying delays need to be considered then digital control networks consisting of wave variables can be used to control interior conic dissipative systems. Robotic systems are a special class of interior conic dissipative systems in which we shall demonstrate force feedback telemanipulation architectures which allows one to (in)directly exchange position information.

Dr. Nicholas Kottenstette is currently the Principal Control Systems Engineer at Corindus Vascular robotics. A senior member of IEEE, he holds a MS from the Mechanical Engineering Department at MIT and a PhD in Electrical Engineering from The University of Notre Dame. His research develops constructive resilient networked control principles for Cyber Physical Systems. The principles he has developed apply to nonlinear affine systems, including medical robotic systems, fixed wing aircraft, quadrotor aircraft, robotic, thermal, semiconductor

manufacturing, alternative energy generation, digital signal processing, and suspension systems. He has authored or coauthor of over 50 publications, including 14 US patents.

Brett Prince joined Corindus in September 2012, bringing significant Sales and Marketing experience, as well as his experience as Director of Product Management at Precision Therapeutics. While at General Electric he held a variety of sales and marketing leadership roles in both the life-sciences and imaging divisions. Mr. Prince holds a B.S. in Materials Science and Engineering from Cornell University and an M.B.A. from MIT Sloan.

Have more questions? Want to share a drink with the speaker? Want to network with fellow engineers and professionals? Just want to chat about the current goings-on in Robotics, or technology in general? Join us for dinner, where you can talk about Robotics in a more casual setting!

UNHOSTED DINNER Bertucci's, 1257 Highland Ave., Needham, MA 02492

GENERAL INFORMATION

This and other RAS meetings are open to the general public. For more information about the RAS Boston Chapter, contact Chapter Chair Andy Vidan at chair@robotics-boston.org or visit http://www.robotics-boston.org/.

To assist us in planning this meeting, please pre-register at http://www.ieeeboston.org/Register/

Doors open: 6:00 P.M.; Presentation: 6:30 P.M.; Dinner: 8:00 P.M.

Olin College, 1000 Olin Way, Needham, MA 02492; Milas Hall Auditorium

Life Members - 4:00PM, Wednesday, 13 January

Estate Planning, Wills, Trusts and Taxes

and wishes of an individual through incapacity and post-death. She will then delve into a comparison between Wills and Trusts, explaining what typically dictates the usage of the latter instead of relying on the former. An outline of the probate process will be provided, as well as tips and tricks to avoid common pitfalls and to simplify the work to be done when someone dies. Finally, she will explain the roles played by the various relevant taxes--capital gains, income, and estate.

Nancy specializes exclusively in estate planning and elder law, and she has been in private practice since 1999. As an estate planner, Nancy provides particular expertise to clients with minor or disabled children, with taxable estates, and with ownership interests in business entities. In the field of elder The meeting will be held at the Lincoln Lab Aulaw, Nancy possesses current and accurate knowl- ditorium, 244 Wood Street., Lexington, MA at edge of a complex area subject to an ever-chang- 4:00 PM. Refreshments will be served at 3:30 ing regulatory climate. She is a member of the Na- PM. Registration is in the main lobby. Foreign tional Academy of Elder Law Attorneys - including its Massachusetts Chapter—as well as the Massa- quests. Please pre-register by e-mail to recepchusetts Bar Association and the North Middlesex tion@II.mit.edu and indicate your citizenship. Bar Association. She is also an accredited attorney Please use the Wood Street Gate. with Veterans Administration.

Nancy Catalini Chew is a graduate of Boston College Law School and was admitted to practice in Massachusetts in 1996. She earned her Bachelor of Arts degree in Geography, summa cum laude, from the University of New Hampshire, and she is a member of Phi Beta Kappa.

Estate Planning, Wills, Trusts and Taxes: Attorney Nancy is frequently asked to speak at local Coun-Chew will discuss the components of a basic es- cils on Aging, Chambers of Commerce events, fatate plan, which protects and preserves the goals cilities for the elderly, and she has been featured on various local access cable television programs, all in an effort to educate the public with accurate information.

> Nancy has served on the Board of Trustees for an area hospital and is also a member of its Ethics Committee. She has acted as a board member for various charitable entities, and currently acts as Town Moderator in her home town of Ashby, where she currently resides with her husband and their children.

> For additional information, please visit her website: http://www.attycatalinichew.com/ or contact her: email: attychew@attychew.com

> national visitors to Lincoln Lab require visit re-

For directions go to http://www.ll.mit.edu/; for other information, contact Steve Teahan, Chairman, at (978)763-5136, or Steve.F.Teahan@raytheon.com

To assist us in planning this meeting, please pre-register at

http://www.ieeeboston.org/Register/.

Reliability Society – 5:30PM, Wednesday, 13 January

Reliability Growth Test

Planning and Data Analysis: What are the Real Final Results?

Milena Krasich of Raytheon IDS

Reliability growth through test and analysis has been a valuable industry tool for improvement of reliability of products for several decades. To provide a measure of this improvement, several mathematical models have been developed.

Two of the well-known models for planning and monitoring of reliability growth are Duane, known as graphical methodology, and AMSAA /CROW, known as analytical model. Regardless, the fact is that the two models are based on the same principle, but contain a serious error in planning of the test duration and consequently in test data analysis, reporting of the results, and the measure of reliability improvement.

The presentation will show how this mathematical -- and also theoretical -- error, unaddressed for decades, leads to incorrectly planned test duration and unrealistic overestimate of achieved reliability improvement.

Milena Krasich is a Senior Principal Systems En- http://www.ieeeboston.org/Register/.

hardware gineer in Raytheon Integrated Defense Systems, Whole Life Engineering in RAM Engineering Group, Marlborough, MA. Prior to joining Raytheon, she was a Senior Technical Lead of Reliability Engineering in Design Quality Engineering of Bose Corporation, Automotive Systems Division after her five-year tenure at the Jet Propulsion Laboratory in Pasadena, California. While in California, she was a part-time professor at the California State University Dominguez Hills, graduate school, and the Cal Poly Pomona, undergraduate programs. She holds a BS and MS in Electrical Engineering from the University Of Belgrade, Yugoslavia, and is a California registered Professional Electrical Engineer. She is Technical Advisor (Chair) to the US Technical Advisory Group (TAG) of the IEC Technical Committee, TC56, Dependability.

> **Meeting Location:** MIT Lincoln Laboratory, 3 Forbes Road, Lexington, MA 02420

Admission: No charge.

To assist us in planning this meeting, please pre-register at

2016 IEEE International Symposium on Phased Array Systems & Technology October, 18 - 21 2016 www.array2016.org (Abstract submission deadline, February 1, 2016)

Save the travel costs and participate in these IEEE conferences held locally.

2016 IEEE High Performance Extreme **Computing Conference** September 13 - 15 2016 www.ieee-hpec.org (Abstract submission deadline is May 16, 2016)

2016 IEEE Symposium on Technologies for Homeland Security May 10 -12 2016 www.ieee-hst.org (Abstract submission deadline is January 4, 2016)

Photonics Society Meeting - 6:30PM, Thursday, 14 January

Recent advancement of LDPC Codes for High-speed **Optical Communications**

Dr. Toshiaki Koike-Akino - Mitsubishi Electric Research Laboratories

Low-density parity-check (LDPC) codes have been one of essential sub-systems to realize near errorfree fiber-optic communications. In this seminar, we introduce recently developed design/decoding methods to improve performance of LDPC codes suited for low-power optical communications.

Toshiaki Koike-Akino received the B.S. degree in electrical and electronics engineering, M.S. and Ph.D. degrees in communications and computer engineering from Kyoto University, Kyoto, Japan, in 2002, 2003, and 2005, respectively.

During 2006–2010, he was a Postdoctoral Researcher with Harvard University, and since 2010, he has been with Mitsubishi Electric Research Laboratories, Cambridge, MA, USA. His research interests include digital signal processing for data communications and sensing. He received the IEEE GLOBECOM'08 Best Paper Award and the IEEE GLOBECOM'09 Best Paper Award.

This meeting begins at 6:30 PM Thursday, Janu- http://www.ieeeboston.org/Register/.

ary 14th, 2016 and will be located 3 Forbes Road (an MIT Lincoln Laboratory facility), Lexington, MA, 02420. The meeting is free and open to the public. All are welcome. Prior to the seminar there will be social time and networking from 6:30 - 7:00PM. Dinner will also be provided. The seminar will begin at 7:00PM.

For more information contact Jade Wang, Boston IEEE Photonics Society Chapter chair at jpwang@II.mit.edu, or visit the Boston IEEE Photonics Society website at www.bostonphotonics.org.

Directions to Forbes Rd Lincoln Laboratory: (from interstate I-95/Route 128). Take Exit 30B onto Marrett Rd in Lexington - Merge into left lane. Make the first Left onto Forbes Rd.

Proceed straight through the small rotary and enter the parking lot. The entrance is on your right.

To assist us in planning this meeting, please pre-register at

Entrepreneurs' Network Cambridge Meeting - 6:00PM, Tuesday, 19 January

Incubator, Accelerator and Shared Work Spaces Expo

Meeting location: Microsoft NERD Center, 1 Me- The Expo will be held on Tuesday, January 19, morial Drive, Cambridge, MA

Like last year, the Boston Entrepreneurs' Network offers our annual Expo of accelerators, incubators, and co-working spaces who will showcase rapid development options to entrepreneurs in the Greater Boston Area. We at ENET hope that you will join us at our Expo this year!

2016, 6-9 p.m. at the Microsoft New England Research and Development Center (NERD), 1 Memorial Drive, Cambridge, MA. The NERD is within easy walking distance of the Kendall Square Red Line T Station. Beverages and pizza will be served. Last year, over 100 entrepreneurs attended the event and more than 20 incubators exhibited.

Each exhibitor will host a table with up to two rep-

promotional materials and business cards. During the Expo, exhibitors will have up to 2 minutes to present their elevator pitch in front of the attendees.

chance to meet New England's leading entrepreneurial business incubators. In addition, you can network with other founders and participants who, like you, are on their way to the top!!

Meeting Co-Organizer: Christina J. and is the CEO of Sleek Marketingu.com. Twitter: @christinainge, LinkedIn: http://www.linkedin.com/ in/christinainge

with over 20 years experience in content creation. After helping to bring in its most successful year, web technologies, and project management. Her areas of expertise include the design of social media marketing campaigns that boost brand recogni- Accounts Manager at Abbott Laboratories where tion and affiliation. Through best practices SEO, she she focused on contract compliance, increasing teaches methods that enhance click-through experiences, improve conversion rates and increase or- contract management and auditing procedures that ganic search rankings. She helps companies with resulted in a new nationwide cost center the proproduct go-to-market plans, email marketing strat- duced annual savings of over \$1 million. She also egy and implementation, online lead conversion and lead generation analysis and optimization, and today. product positioning.

Through Sleek Marketing University she teaches the latest digital marketing techniques to help startups, businesses, and nonprofits reach new audiences cost-effectively. Subjects addressed include SEO, Google Analytics, social media, marketing

automation and many others.

Meeting Co-Organizer: Maureen Mansfield, ALM, Chief Contract Officer, MANSFIELD LAW, MANSFIELD LAW, Twitter: @MaureenManALM.

resentatives to answer your questions, distribute Maureen Mansfield, ALM, is a business development, corporate development, and strategy professional for companies in the the private and public sectors. Currently, Maureen is at Mansfield Law where she works with entrepreneurs, inventors, Come and join us on January 19th for a great artists, startups, and emerging growth companies. Previously, she cofounded a boot strapped startup that has progressed to a \$10 million term sheet agreement. She currently serves as an advisor and mentor for several startups and related entrepreneurial ventures. She is a member of the Executive Board of The Boston Entrepreneurs' Network (Bos-Inge, is the founder of ThoughtLight ton ENET), where she leads Alliance Partnerships.

> ing University, www.sleekmarket- Prior to joining Mansfield Law in 2009, Maureen was a New England Director of Business Development for the award-winning firm Syska & Hennessy, Inc., With S&H, she focused on business development and corporate management strategy for ma-Christina is a marketing consultant jor accounts locally, nationally, and internationally. Maureen was awarded a seat on the board of directors. Previously, Maureen was a Senior National revenues, and sales. She initiated and innovated helped cofound two holiday charities that continue

> > Maureen received two BAs from the University of lowa., one in Journalism and one in Communication. Maureen also received a Master of Liberal Arts (ALM) in Management with a Concentration in Finance & Control from Harvard University.

> > Where: Microsoft NERD Center, 1 Memorial Drive, Cambridge, MA

> > **Directions:** http://microsoftcambridge.com/ About/Directions/tabid/89/Default.aspx For updates please monitor: www.boston-enet. org

Computer Society, GBC/ACM and BostonCHI - 7:00 PM, Thursday, 21 January

Beyond the UX Tipping Point

Jared M. Spool, Founding Principal, User Interface Engineering

For the longest time, making a great experience for the user was a luxury item in a business's strategy. It was a nice-to-have, after identifying a customer need and fulfilling it with a working product. The product had to work and it had to ship. If it was a great experience, well all the better. Times have changed.

The cost of creating and delivering a product is no longer a barrier to entry. Quality is no longer a differentiator.

What's left? The experience of using the product. If you're going to be truly competitive in today's markets, your products and services better have a great experience. To do that, a fundamental shift has to occur inside your organization. It's no longer acceptable to ship a product with a poor experience or to deliver poor customer service. Every part of the organization has to be infused with an understanding of great user experience. Your organization has to cross the UX Tipping Point.

Jared M. Spool is the founder of User Interface Engineering and a co-founder of Center Centre. If you've ever seen Jared speak about user experience design, you know that he's probably the most effective and knowledgeable communicator on the subject today. He's been working in the field of usability and experience design since 1978, before the term "usability" was ever associated with computers.

Jared spends his time working with the research teams at User Interface Engineering, helps clients understand how to solve their design problems, explains to reporters and industry analysts what the current state of design is all about, and is a toprated speaker at more than 20 conferences every year. With Dr. Leslie Jensen-Inman, he is starting Center Centre, a new school in Chattanooga, TN to create the next generation of industry-ready UX Designers. In 2014, the school, under the nickname of

the Unicorn Institute, launched a Kickstarter project that successfully raised more that 600% of its initial goal. He is also the conference chair and keynote speaker at the annual UI Conference and UX Immersion Conference, and manages to squeeze in a fair amount of writing time. He is author of the book, Web Usability: A Designer's Guide and co-author of Web Anatomy: Interaction Design Frameworks that Work. You can find his writing at uie.com and follow his adventures on the twitters at @jmspool.

The meeting will be held in the new meeting auditorium at the Verizon Technology Center. The address is 60 Sylvan Road, Waltham, MA 02451. The entrance is by the far corner - with the picnic tables out front - and not the tower or the new building. It is most easily reached by the West Street entrance.

Networking and limited refreshments provided by BostonCHI at 6:30 Verizon Labs, Waltham, MA. Verizon requires us to provide a list of attendees in advance, so if you want to come, you need to register at http://jaredspooljan2016. eventbrite.com, but admission is free.

We will be taking Jared to dinner at Green Papaya after the talk at about 9pm.

Up-to-date information about this and other talks is available online at http://ewh.ieee.org/r1/boston/computer/. You can sign up to receive updated status information about this talk and informational emails about future talks at http://mailman.mit.edu/mailman/listinfo/ieee-cs, our self-administered mailing list.

For more information contact Peter Mager (p.mager@computer.org)

[Admission is free but you must register at

[Admission is free, but you must register at http://jaredspooljan2016.eventbrite.com]

To assist us in planning this meeting, please pre-register at

http://www.ieeeboston.org/Register/.

Consultants Network - 6:30PM, Wednesday, 27 January

Tax Information and Tax Pits for 2015 Reporting

Brad Capland

tion for individuals and small businesses, with an emphasis on closely held and family businesses.

- **General Information**
- Tax Reporting
- **Tax Preparation**
- Reporting Issues for Independent Consultants
- What to Look for in a CPA or Professional Tax

Preparer

- What Not to Look For
- Tax Tips
 - Tax Pitfalls

PLEASE NOTE: The meeting is open to the public. No charge for Consultants Network members or employees of Constant Contact; \$5 entrance fee For more information, e-mail cn.boston@ieee. for all others. Casual dress.

Registration

(no registration required)

Brad is both a CPA and Registered Representative The Consultants Network meeting starts at 6:30 PM. affiliated with Bay State Financial. His experience The meeting will take place at Constant Contact, includes all areas of tax planning and tax prepara- Reservoir Place - 1601 Trapelo Road, Waltham, MA 02451, Great Room on the first floor.

Driving Directions

Follow I-95/route 128 to Trapelo Rd in North Waltham, Waltham. Take exit 28 from I-95/route 128. (https://goo.gl/maps/tvn3I)

Consultants Network meetings generally take place on the fourth Wednesday of each month, but are not held during the summer months. Check the Consultants Network website for meeting details and last-minute information. http://www.boston-consult.com/calendar.php

org or chairman@boston-consult.com; or contact the chairman Heinz Bachmann, at 978-637-2070. The Consultants Network website is at www.boston-consult.org.

Geoscience and Remote Sensing Society - 5:30PM, Thursday, 28 January

Using Satellite FTS-IR Measurements of Tracers to Quantify the Strength of the Mean Overturning Circulation of the Stratosphere

Marianna K. Linz, fourth year PhD student in the MIT-Woods Hole Oceanographic Institute Joint Program in Physical Oceanography.

the overturning circulation of the

The Brewer-Dobson circulation is intensify under global warming scenarios.

stratosphere and was originally in- Although the general structure of the circulation can ferred from observations of ozone be qualitatively assessed from ozone and water vaand water vapor. It is critical for the por, the quantitative strength of the circulation has stratospheric ozone distribution and been much more difficult to measure. Certain trace for troposphere-stratosphere cou- gases, SF6 and CO2, can be used to estimate the pling. The consensus from climate "age" of air, or how long on average air has been in models is that the Brewer-Dobson circulation will the stratosphere since upwelling through the tropi-

Please take this short survey, https://www.surveymonkey.com/r/B8R2DYL

age.

The speaker will show results from an idealized atmospheric model with a seasonal cycle, which reveal the required spatial and temporal sampling will use measurements from the ACE and MIPAS FTS-IR limb sounders in this theoretical framework. Nino in climate models. to determine the magnitude and variability of the circulation of the stratosphere. Between 2007 and Meeting Location: 2011, while there was little change in the strength of the circulation in the lowermost stratosphere, the ton, MA 02421. upper stratosphere exhibited changes in SF6 concentrations consistent with a 20% weakening of the strength of the overturning circulation.

Marianna Linz is a fourth year PhD student in the

cal tropopause. I will present a new time-dependent MIT-Woods Hole Oceanographic Institute Joint Protheory for quantitatively assessing the magnitude gram in Physical Oceanography, where she studies of the stratospheric circulation using this theoretical the stratospheric circulation with her advisor Alan Plumb. She completed her bachelors in Chemistry and Physics and Earth and Planetary Sciences at Harvard University in 2011. She is currently a National Defense Science and Engineering Graduate Fellow. She is interested in climate dynamics, and necessary to observe the circulation. Then she has previously worked on ocean eddies, large-scale ocean heat transport, and the representation of El

> MIT Lincoln laboratory -Forbes Road Cafeteria - 3 Forbes Road Lexing-

> To assist us in planning this meeting, please pre-register at http://www.ieeeboston.org/Register/.

IEEE Boston Section Social Media Links:

Twitter: https://twitter.com/ieeeboston

Facebook: https://www.facebook.com/IEEEBoston

YouTube: https://www.youtube.com/user/IEEEBostonSection

Google+: https://plus.google.com/107894868975229024384/

LinkedIn: https://www.linkedin.com/groups/IEEE-Boston-Section-3763694/about

Introduction to Embedded Linux

Time & Date: 6 - 9PM; Mondays, March, 7, 14, 21, 28

Location: Crowne Plaza Hotel, 15 Middlesex Canal Park Road, Woburn, MA

Mike McCullough, RTETC, LLC Speaker:

Overview - This 4 day course introduces the Linux Operating System and Embedded Linux Distributions. The course focuses on the development and creation of applications in an Embedded Linux context using the Eclipse IDE. The first part of the course focuses on acquiring an understanding of the basic Linux Operating System, highlighting areas of con- Additional Reference Materials cern for Embedded Linux applications development • Linux Kernel Development by Robert Love using Eclipse. The latter part of the course covers . Linux System Programming by Robert Love testing, booting and configuring of Embedded Linux • Embedded Linux Primer by Christopher Hallinan systems including embedded cross-development • Pro Linux Embedded Systems by Gene Sally and target board considerations.

Who Should Attend - The course is designed for • Linux Device Drivers by Jonathan Corbet et al real-time engineers who are building Embedded Linux solutions. It is also targeted at experienced Venkateswaran developers requiring a refresher course on Embedded Linux. This course will clearly demonstrate both the strengths and weaknesses of the Linux Operating System in Embedded Systems.

Course Objectives

- and the Eclipse IDE framework.
- To understand the complexities of Embedded RTETC, LLC is a provider of Eclipse-based devel-Linux Distributions in embedded systems.
- To learn how to configure, boot and test Embedded Linux distributions and applications running on Embedded Linux target systems.
- To give students the confidence to apply these concepts to their next Embedded Linux project Hardware and Software Requirements - The stu- The Basics dent should have a working Linux desktop environ- Linux Terminology, History and Versioning ment either directly installed or in a virtualization. The Linux Community: Desktop & Embedded environment. The desktop Linux should have the Linux and the GPL GNU compiler and binary utilities (binutils) already Linux References (Books and Online) installed. A working Eclipse C/C++ installation or Getting Started

prior knowledge of C-based Makefiles is useful for completion of lab exercises. Lab solutions are also provided with the course. An Embedded Linux target hardware platform is useful but not absolutely required for this course.

- Embedded Linux Development Using Eclipse by Doug Abbott
- Essential Linux Device Drivers by Sreekrishnan

Lecturer – Mike McCullough is President and CEO of RTETC, LLC. Mike has a BS in Computer Engineering and an MS in Systems Engineering from Boston University. A 20-year electronics veteran, he has held various positions at LynuxWorks, Tilera, • To provide a basic understanding of the Linux OS Embedded Planet, Wind River Systems, Lockheed Sanders, Stratus Computer and Apollo Computer. opment tools, training and consulting for the embedded systems market.

OUTLINE

Course Schedule Day 1

Building the Kernel Source Code

Embedded Linux Kernels

Linux 2.6 and 3.x

Basic Kernel Capabilities

Process and Threads Management

Signals and System Calls

Synchronization, IPC and Error Handling

Timing and Timers

Memory Management and Paging

The I/O Subsystem: A Tale of Two Models

Modularization

Debugging

Process-Level and System-Level Debug

GDB, GDB Server and the GDB Server Debugger

Other Debug and Test Tools

An Eclipse Remote Debug Example

Advanced Debug with printk, syslogd and LTTng

System-Level Debug

System-Level Debug Tools

The /proc Filesystem

Advanced Logging Methods

KGDB and KDB

Crash and Core Dumps

Course Schedule Day 2

Process & Threads Management What are Processes and Threads?

Virtual Memory Mapping

Creating and Managing Processes and Threads

Thread-Specific Data (TSD)

POSIX

The Native POSIX Threading Library (NPTL)

Kernel Threads

Signals

System Calls

Scheduling

Linux 2.4 and 2.6 Scheduling Models

The O(1) Scheduler

The Completely Fair Scheduler (CFS)

Synchronization

Via Global Data

Via Semaphores, Files and Signals

Condition and Completion Variables

Mutexes and Futexes

Inter-Process Communications (IPC)

Message Queues

Semaphores Revisited

Shared Memory

Pipes and FIFOs

Remote Procedure Calls

Networking

Course Schedule Day 3

Memory Management and Paging

Demand Paging and Virtual Memory Allocating User and Kernel Memory

Mapping Device Memory

The Slab Allocator

The OOM Killer

Memory in Embedded Systems

Advanced Memory Operations

Linux and Memory

Managing Aligned Memory

Anonymous Memory Mappings

Debugging Memory Allocations

Locking and Reserving Memory

Error Handling

errno and perror

strerror and strerror r

oops, panics and Segmentation Faults

Timing

How Linux Tells Time

Kernel, POSIX and Interval Timers

High-Resolution Timers (HRTs)

Modularization

Creating a Module and Module Loading

Dependency Issues

In Embedded Systems

Shared Libraries

A Shared Library Example

Static and Dynamic Libraries

The I/O Subsystem: A Tale of Two Models

The Original Device Driver Model

The Standard I/O Interface

Major and Minor Numbers

Configuring the Device Driver

The Evolution of the New Device Driver Model

The Initial Object-Oriented Approach

Platform Devices, Busses, Adapters and Drivers

Comparing the Two Driver Models

Course Schedule Day 4

Advanced I/O Operations

Standard I/O Operations

Scatter-Gather and Asynchronous I/O

Poll, Select and Epoll

Memory-Mapped I/O

File Advice

I/O Schedulers

Interrupt and Exception Handling

Bottom Halves and Deferring Work

The Linux Boot Process

The Root Filesystem

Desktop Linux Boot

Bootloaders and U-Boot

Embedded Linux Boot Methods

Building and Booting from SD Cards

Managing Embedded Linux Builds

Configuring and menuconfig

Building Custom Linux Images

Target Image Builders

LTIB and Yocto

System Architecture Design Approaches

Deploying Embedded Linux

Choosing and Building the Root Filesystem

Useful Embedded Filesystems

Module Decisions

Final IT Work

Embedded Linux Trends

Some Final Recommendations

Decision (Run/Cancel) Date for this Courses is Friday, February 26, 2016

Payment received by Feb. 23

Members \$400

Non-members \$430

Payment received after Feb. 23

IEEE Members \$430

Non-members \$455

To Register, http://ieeeboston.org/event/introduction-embedded-linux-spring-2016

Call for Course Speakers/Organizers

IEEE's core purpose is to foster technological innovation and excellence for the benefit of humanity. The IEEE Boston Section, its dedicated volunteers, and over 8,500 members are committed to fulfilling this core purpose to the local technology community through chapter meetings, conferences, continuing education short courses, and professional and educational activities.

Twice each year a committee of local IEEE volunteers meet to consider course topics for its continuing education program. This committee is comprised of practicing engineers in various technical disciplines. In an effort to expand these course topics for our members and the local technical community at large, the committee is publicizing this CALL FOR COURSE SPEAKERS AND ORGANIZERS.

The Boston Section is one of the largest and most technically divers sections of the IEEE. We have over 20 active chapters and affinity groups.

If you have an expertise that you feel might be of interest to our members, please

submit that to our online course proposal form on the section's website (www. ieeeboston.org) and click on the course proposal link (direct course proposal form link is http://ieeeboston.org/course-proposals/ . Alternatively, you may contact the IEEE Boston Section office at sec.boston@ieee.org or 781 245 5405.

- Honoraria can be considered for course lecturers
- Applications oriented, practical focused courses are best (all courses should help attendees expand their knowledge based and help them do their job better after completing a course
- Courses should be no more than 2 full days, or 18 hours for a multi-evening course
- Your course will be publicized to over 10,000 local engineers
- You will be providing a valuable service to your profession
- Previous lecturers include: Dr. Eli Brookner, Dr. Steven Best, Colin Brench, to name a few.

CALL FOR PAPERS Dates Extended

2016 IEEE International Symposium on

Phased Array Systems and Technology

Revolutionary Developments in Phased Arrays

18-21 October 2016

Westin Waltham Hotel, Greater Boston, Massachusetts, USA

www.array2016.org

Sponsors

Platinum

Raytheon

About the Symposium

Phased array systems continue to be a rapidly evolving technology with steady advances motivated by the challenges presented to modern military and commercial applications. This symposium will present the most recent advances in phased array technology and present a unique opportunity for members of the international community to interact with colleagues in the field of Phased Array Systems and Technology.

Gold

Georgia Research Tech Institute

Suggested Topics:

- System Architecture
- · Aperture Design
- Antenna Elements
- · Beamforming Techniques
- T/R Modules
- Signal Processing for Arrays
- · Array Measurements
- Advanced Materials
- Packaging and Manufacturing
- Applied Computational Electromagnetics

Banquet Sponsor

Bronze

Technical Co-Sponsors

Qur Blog

Special Sessions

Please provide suggestions for special sessions to the Technical Program Chair at info@array2016.org

Paper Template and Submission Procedures

Template and submission procedures are available at www.array2016.org/forauthors.htm

Publication Information

All accepted papers will be published on the conference CD-ROM and distributed to conference attendees. Selected papers meeting the publishing requirements will be published in IEEE Xplore as part of the IEEE Conference Publication Program.

Important Dates:

Summary (~1000 words + figures)	01 Feb 2016
Notification of Acceptance	15 Mar 2016
Final Papers (8 page max)	01 Jul 2016

Conference Committee

Conference Chair:

Jeffrey S. Herd, MIT Lincoln Laboratory (MIT LL)

Vice Chair:

William Weedon, Applied Radar

Honorary Chair:

Eli Brookner, Raytheon (retired)

Technical Program Chair:

Alan J. Fenn, MIT LL

Technical Program Vice Chair:

Wajih Elsallal, MITRE

Special Sessions Chair:

Sean Duffy, MIT LL

Plenary Session Chairs:

David Mooradd, MIT LL Eli Brookner, Raytheon (retired)

Tutorials Chairs:

Jonathan Williams, STR Jonathan Doane, MIT LL

Student Program Chairs:

Bradley T. Perry, MIT LL Justin Kasemodel, Raytheon

Secretary:

Duane J. Matthiesen, Technia

International Liaison:

Alfonso Farina, Selex (retired)

Exhibits Chair:

Dan Culkin, SRC, Inc.

Publicity Chairs:

Glenn Meurer, MITRE Don McPherson, SRC, Inc.

Social Media Chair:

Gregory Charvat, Humatics, Inc.

Publications Chairs:

Raoul Ouedraogo, MIT LL Will Moulder, MIT LL

Poster Sessions Chairs:

Greg Arlow, Lockheed Martin Mark McClure, STR

Sponsorships Chair:

William Weedon, Applied Radar

Local Arrangements/Finance:

Robert Alongi, IEEE Boston

Website:

Kathleen Ballos, Ballos Associates

Advisors:

Ellen Ferraro, Raytheon Robert J. Mailloux, Arcon Hans Steyskal, Arcon Chris McCarroll, Raytheon

v.19

CALL FOR PAPERS

www.ieee-hpec.org

Committees

Senior Advisory Board Chair Mr. Robert Bond MIT Lincoln Laboratory

Senior Advisory Board *Prof. Anant Agarwal* MIT CSAIL

Dr. Richard Games Chief Engineer, MITRE Intelligence Center

Mr. John Goodhue Director, MGHPCC

Dr. Richard Linderman Chief Scientist, Air Force Research Laboratory Information Directorate

Mr. David Martinez
Associate Division Head MIT
Lincoln Laboratory

Dr. John Reynders CIO Moderna

Dr. Michael Stonebraker Co-founder SciDB and Vertica; CTO VoltDB and Paradigm4

Chairman & SIAM Liaison

Dr. Jeremy Kepner Fellow, MIT Lincoln Laboratory

Publicity Co-Chairs

Dr. Albert Reuther
MIT Lincoln Laboratory
Mr. Dan Campbell
GTRI

CFP Co-Chairs

Dr. Patrick Dreher MIT Dr. Franz Franchetti CMU

Publications Chair

Prof. Miriam Leeser Northeastern University

Administrative Contacts

Mr. Robert Alongi
IEEE Boston Section

The IEEE High Performance Extreme Computing Conference (HPEC '16) will be held in the Greater Boston Area, Massachusetts, USA on 13 – 15 September 2016. The HPEC charter is to be the premier conference in the world on the confluence of HPC and Embedded Computing.

The technical committee seeks new presentations that clearly describe advances in high performance extreme computing technologies, emphasizing one or more of the following topics:

- Advanced Multicore Software Technologies
- Case Studies and Benchmarking of Applications
- Automated Design Tools
- Mapping and Scheduling of Parallel and Real-Time Applications
- Computing Technologies for Challenging Form Factors
- ASIC and FPGA Advances
- Open System Architectures
- Data Intensive Computing

- Big Data and Distributed Computing
- Interactive and Real-Time Supercomputing
- Graph Analytics and Network Science
- Fault-Tolerant Computing
- Embedded Cloud Computing
- Digital Front Ends
- General Purpose GPU Computing
- Advanced Processor Architectures
- Secure Computing & Anti-Tamper Technologies
- New Application Frontiers

HPEC accepts two types of submissions:

- 1. Full papers (up to 6 pages, references not included), and
- 2. Extended abstracts (up to 2 pages, references included).

Preference will be given to papers with strong, quantitative results, demonstrating novel approaches or describing high quality prototypes. Authors of full papers can mark their preference for a poster display or an oral presentation. Presenters who wish to have hardware demonstrations are encouraged to mark their preference for a poster display. Accepted extended abstracts will be displayed as posters.

All paper and extended abstract submissions need to use the approved IEEE templates. Full paper submissions with the highest peer review ratings will be published by IEEE in the official HPEC proceedings available on IEEE eXplore. All other accepted submissions and extended abstracts are published on ieee-hpec.org. Vendors are encouraged to sign up for vendor booths. This will allow vendors to present their HPEC technologies in an interactive atmosphere suitable for product demonstration and promotion.

We welcome input (hpec@ieee-hpec.org) on tutorials, invited talks, special sessions, peer reviewed presentations, and vendor demos. Instructions for submitting will be posted on the conference web site shortly.

Call for Papers, Posters, and Tutorials

2016 IEEE International Symposium on Technologies for Homeland Security

10 – 12 May Westin Hotel, Waltham, MA http://ieee-hst.org/

Co-sponsors:

Call for Papers, Posters & Tutorials

The 15th annual IEEE Symposium on Technologies for Homeland Security (HST '16), will be held 10 – 12 May, in the Greater Boston, Massachusetts area. This symposium brings together innovators from leading academic, industry, business, Homeland Security Centers of Excellence, and government programs to provide a forum to discuss ideas, concepts, and experimental results.

Produced by IEEE with technical support from DHS S&T, IEEE, IEEE Boston Section, and IEEE-USA and organizational support from MIT Lincoln Laboratory, Raytheon, Battelle, and MITRE, this year's event will once again showcase selected technical paper and posters highlighting emerging technologies in the areas of:

Recovery and Response

Cyber Security

Biometrics & Forensics

Land and Maritime Border Security

Attack and Disaster Preparation,

We are currently seeking technical paper, poster and tutorial session submissions in each of the areas noted above. Submissions should focus on technologies with applications available for implementation within about five years. All areas will cover the following common topics:

- Strategy and threat characterization, CONOPs, risk analysis,
- Modeling, simulation, experimentation, and exercises & training, and
- Testbeds, standards, performance and evaluations.

Contact Information

For more detailed information on the Call for Papers, Posters & Tutorials, as well as Sponsorship and Exhibit Opportunities, visit the website: http://ieee-hst.org/ or email: information@ieee-hst.org. Submissions should be made at the following website: https://cmt.research.microsoft.com/HST2016/

Important Dates

Paper Abstract Deadline: (final deadline)

Paper, Poster and Tutorial Acceptance Notification

Final Paper Submission Deadline:

April 1, 2016

All deadlines are by midnight Eastern Time.

Organizing Committee

General Chair:
Deputy Chair:
Technical Co-Chair:
Tutorials Chair:
Business Program Chair:
Local Arrangement Chair:
Marketing Chair:
Publications Chair:
Sponsorship/Exhibits Chair:
Special Advisor to the Chair:
Registration Chair:

James Flavin, MIT Lincoln Laboratory
Fausto Molinet, Matrix Internationale
Gerald Larocque MIT Lincoln Laboratory
Anthony Serino, Raytheon
Andrea Marsh, Battelle
Bob Alongi, IEEE Boston
Jessica Patel, Raytheon
Adam Norige, MIT Lincoln Laboratory
Fausto Molinet, Matrix Internationale
Lennart Long, EMC Consultant
Karen Safina, IEEE Boston

Technical Program Committee Chairs

Attack and Disaster Preparation, Recovery and Response
Lance Fiondella, UMass, Dartmouth Kenneth Crowther, MITRE
Biometrics & Forensics
Eric Schwoebel, MIT Lincoln Laboratory James L. Wayman, San Jose State University Land and Maritime Border Security
Karen Panetta, Tufts University
Rich Moro, Raytheon
John Aldrige, MIT Lincoln Laboratory
Cyber Security

David Balenson, SRI International Emily Frye, MITRE

Introduction to Embedded Android

Date & Time: Mondays, January 4, 11, 18, 25, 2016, 6 - 9PM

Location: Crowne Plaza Hotel, 15 Middlesex Canal Park Road, Woburn, MA

Speaker: Mike McCullough, RTETC, LLC

Last Notice Before the Course Begins, Register Now!!!

Course Summary - This course introduces the student to the use of Android in Embedded Systems and the use of Embedded Android Distributions. The first part of the course focuses on acquiring an understanding of basic Android concepts and on how Android is hosted by the Linux Operating System, highlighting areas of concern for Embedded Android systems development such as overall system design, boot performance and customization. The latter part of the course covers the differences between the standard Android Open Source Project and Embedded Android distributions.

Who Should Attend - The course is designed for realtime engineers who are building Embedded Android solutions. It is also targeted at experienced developers requiring a refresher course on Embedded Android. This course will clearly demonstrate both the strengths and weaknesses of the use of Android in Embedded Systems.

Course Objectives

- To provide a basic understanding of Android and its use in Embedded Systems
- To gain an understanding of the complexities of Embedded Android Distributions
- To learn how to configure, build, boot and deploy Embedded Android solutions
- To understand the differences between the AOSP and Embedded Android build approaches
- To give students confidence to apply these concepts to their next Embedded Android project

OUTLINE

Course Schedule Day 1

The Basics
What Android Is and What It Is Not
Android Terminology, History and Versioning
The Android Community: Phones, Tablets and Embedded Systems
Android, the GPL and the Apache Harmony Project
Android and Linux References (Books and Online)
Getting Started
The Android Open Source Project

Android Hardware Requirements
Embedded Linux Usage in Android
Java Usage in Android
The Android API
The Dalvik Virtual Machine (VM)
The Android Runtime and Zygote
The Java Native Interface (JNI)
Binder and System Services
Key Android Libraries

Debugging in Android Process-Level and System-Level Debug ADB, DDMS and Monkey GDB and KGDB GDB Server and Remote Debugging An ADB Example

Course Schedule Day 2

Applications Development Overview

The AOSP
The Android Development Host
AOSP Basics
Building and Running Android
ADB and the Emulator

Course Schedule Day 3
The AOSP Build System
Comparison with Other Builders
Configuration and Functions
The envsetup.sh File
Make Recipes
Cleaning
Modules in Android

The Default Build **Basic Build Recipes**

AOSP Build Recipes

The Build Commands

Building the Software Development Kit (SDK)
Building the Compliance Test Suite (CTS)
Building the Native Development Kit (NDK)

API Updates

Building a Single Module Building Out-of-Tree and In-Tree

Linaro

The Linaro Organization Key Members and Participants

The Linaro Mission Objective

The Linaro Android Distribution Approach Getting the Latest Linaro Distribution

The Linaro Distribution and Desktop Requirements

The Linaro Repository

The Linaro Maintainer Tools The Linaro Image Tools

The Linaro Distribution for the i.MX53

Top Level Hierarchy

The GCC Tools for Linaro

The abi, android-toolchain-eabi and bionic Directories

The bootable and build Directories

The cts, dalvik and development Directories

The device Directory

The docs and external Directories

The frameworks and hardware Directories

The kernel Directory

The libcore and linaro-kernel-config Directories

The ndk, packages and prebuilt Directories The sdk Directory

The system Directory

U-Boot in Linaro

The Linaro Build Process

The Linaro SD Creation Process

The Linaro Tarballs

Course Schedule Day 4

Native User Space The Android Filesystem

The Android Root Directory

The system and data Directories

Building the Linux and Android Filesystems

SD Card Layout

The Ándroid Init Process

Operation and Configuration

Global Properties and ueventd

The Boot Logo

The Android Command Line

The Shell

Toolbox

Native Utilities and Daemons

Framework Utilities and Daemons

Adding Capabilities to the Android Filesystem

The Linux Console Shell

The bash and ash Shells

Busybox

Linux Daemons Used by Android

Adding Capabilities to the Linux Filesystem

The Android Framework

Framework Startup Core Building Blocks

System Services and Binder

Boot Animation

Dex Optimizations

Application Startup

Utilities and Commands

Support Daemons

The Hardware Abstraction Layer (HAL)

Advanced Android Customizations

Adding New Hardware Support Customizing the Default Packages

More Init Customizations Embedded Android Trends

Moving to a Generic User Interface

Easier Development for Non-Phones

Debugging Embedded Android

Better Documentation and Training

Some Final Recommendations

Lecturer Bio – Mike McCullough is President and CEO of RTETC, LLC. Mike has a BS in Computer Engineering and an MS in Systems Engineering from Boston University. A 25-year electronics veteran, he has held various positions at LynuxWorks, Tilera, Embedded Planet, Wind River Systems, Lockheed Sanders, Stratus Computer and Apollo Computer. RTETC, LLC is a provider of Eclipse-based development tools, training and consulting for the embedded systems market.

Decision (Run/Cancel) Date for this Courses is Monday, December 28, 2015

Payment received by Dec. 21

IEEE Members \$390

Non-members \$420

Payment received after Dec. 21

IEEE Members \$420 Non-members \$440

To Register, http://ieeeboston.org/event/introduction-to-embedded-android-fall-2015/

Advanced Embedded Linux Optimization

Time & Date: 6 - 9PM, Mondays, April 4, 11, 18, 25

Location: Crowne Plaza Hotel, 15 Middlesex Canal Park Road, Woburn, MA

Speaker: Mike McCullough, RTETC, LLC

Course Summary - This 4-day technical training course provides advanced training in the debugging, testing, profiling and performance optimization of Embedded Linux software. The first part of the course focuses on advanced debugging, testing and profiling in an Embedded Linux context with a focus on using Eclipse, Backend Debuggers, JTAG and In-Circuit Emulators as well as Kernel Logging capabilities and Kernel Hacking. The latter part of the course covers performance measurement and optimization affecting boot, memory, I/O and CPU performance and key performance optimization tools for Embedded Linux software including the perfool, advanced cache usage and compiler-based optimization.

Who Should Attend - The course is designed for realtime engineers who are developing high-performance Linux applications and device drivers using Embedded Linux distributions. It is also targeted at experienced developers requiring a refresher course on Advanced Embedded Linux optimization.

Course Objectives

- To understand methods for debugging, profiling and testing Embedded Linux software.
- To provide an overview of Linux application performance measurement and optimization.
- To understand the tools used for performance optimization of Embedded Linux software.
- To give students the confidence to apply these concepts to their next Embedded Linux project.

OUTLINE

Course Schedule Day 1

Getting Started with Embedded Linux Linux and the GPL Building the Kernel Source Code Embedded Linux Kernels BSPs and SDKs Linux References (Books and Online) Basic Debugging Review Embedded Applications Debugging GDB, GDB Server and the GDB Server Debugger An Eclipse Remote Debug Example Debugging with printk and LTTng System Logs Other Debuggers System-Level Debug System-Level Debug Tools The /proc and /sys Filesystems Basic Logging KGDB and KDB Crash Dumps and Post-Mortem Debugging Debugging Embedded Linux Systems Backend Debuggers JTAG and In-Circuit Emulators Hardware Simulators Analyzers

Course Schedule Day 2

Debugging Device Drivers

Kernel Probes

Kernel Profiling

Kexec and Kdump

Testing
Design for Test
Agile Software Design
Unit-Level Testing
System-Level Testing
Code Coverage Tools
gcov
Automated Testing
DebugFS
Configuring DebugFS
DebugFS Capabilities
Advanced Logging
LogFS
Using Logwatch and Swatch
Using syslogd and syslog-ng

Kernel Hacking
Configuring Kernel Hacking
Kernel Hacking Capabilities
Tracing
ptrace and strace
New Tracing Methods
SystemTap
Etrace Tracepoints and Ever

Ftrace, Tracepoints and Event Tracing

Tracehooks and utrace

Course Schedule Day 3

Profiling
Basic Profiling
gprof and Oprofile
Performance Counters

LTTng

Another DDD Example
Manual Profiling
Instrumenting Code

Output Profiling Timestamping

Measuring Embedded Linux Performance Some Ideas on Performance Measurement

Common Considerations Uncommon Considerations Using JTAG Methods BootLoader Optimizations Boot Time Measurements

Effective Memory and Flash Usage

Filesystem Choices

Addressing Performance Problems
Types of Performance Problems

Using Performance Tools to Find Areas for Im-

provement

Application and System Optimization

Device Driver Optimization
CPU Usage Optimization
Memory Usage Optimization

Disk I/O and Filesystem Usage Optimization

The Perf Tool

Improving Boot Performance

Boot Time Optimization

The Linux Fastboot Capability Building a Smaller Linux

Building a Smaller Application

Filesystem Tips and Tricks Some Notes on Library Usage

Performance Tool Assistance

Recording Commands and Performance System Error Messages and Event Logging

Dynamic Probes

User Mode Linux and Virtualization

Course Schedule Day 4

Improving CPU Performance

Run Queue Statistics

Context Switches and Interrupts

CPU Utilization

Linux Performance Tools for CPU

Process-Specific CPU Performance Tools

Stupid Cache Tricks

Improving System Memory Performance

Memory Performance Statistics

Linux Performance Tools for Memory

Process-Specific Memory Performance Tools

More Stupid Cache Tricks

Improving I/O and Device Driver Performance

Disk. Flash and General File I/O

Improving Overall Performance Using the Com-

piler

Basic Compiler Optimizations

Architecture-Dependent and Independent Opti-

mization

Code Modification Optimizations Feedback Based Optimization Application Resource Optimization

The Hazard of Trust

An Iterative Process for Optimization Improving Development Efficiency

The Future of Linux Performance Tools

Some Final Recommendations

Lecturer Bio – Mike McCullough is President and CEO of RTETC, LLC. Mike has a BS in Computer Engineering and an MS in Systems Engineering from Boston University. A 25-year electronics veteran, he has held various positions at LynuxWorks, Tilera, Embedded Planet, Wind River Systems, Lockheed Sanders, Stratus Computer and Apollo Computer. RTETC, LLC is a provider of Eclipse-based development tools, training and consulting for the embedded systems market.

Decision (Run/Cancel) Date for this Courses is Friday, March 26, 2016

Payment received by March 23

IEEE Members \$395 Non-members \$435

Payment received after March 23

IEEE Members \$435 Non-members \$470

To Register, http://ieeeboston.org/event/advanced-embedded-linux-optimization-spring-2016

Flexible Electronics - Packaging Design, and Materials Analysis for Aerospace, Military, Medical & High end **Consumer Products**

Time & Date: 8AM - 5PM; Thursday, March 31, 2016

Crowne Plaza Hotel, 15 Middlesex Canal Park Road, Woburn, MA Location:

Tina Barcley, , Chief Technical Officer, TAS Consulting Speaker:

Prerequisites:

Assume Student can read schematics, understand component usages and has some basic thermal . analysis capability.

Class Summary:

This is a one-day session focusing on the advanced • packaging needed for a flexible board design. This course will not cover schematic layout and circuit . design. It will cover what you do with the completed schematic. It will address layout issues to avoid and Course Schedule: what components work best in a flexible design. It 1. will show what methods are available and almost - course will be pushed toward the available to package the flexible circuit board.

What materials work best for which industry?

What analysis should be performed to assure specific. (1/2 hr.) the design will work in the intended environ- 4. ment?

Who should attend?

This course is designed for Engineers involved in 6. the above design elements of a project. This course work-arounds, show stoppers, and will demonstrate the work needed to review the ma- realistic answers to some industry concerns. (1 ½ terials and environment for designs using flexible hr.) circuits.

Course Objectives:

- Understand circuit board layout changes for questions. (1 hr.) flexible electronics

- Review, Show, Typical Analysis needed for Reliability concerns
 - Review electronics Packaging Issues and How to handle them
- Introduce Solder Fatigue concepts and what to do about it
- Review different Industry needs and show the key indicators for each.

- Review student backgrounds and industries industries represented. (1/2 hr.)
- Basic background on flexible boards (1/2 hr.) 2.
- Review schematic layouts what works and what doesn't – this will be industry
- Review analysis needed: structural, thermal, reliability, solder fatigue (1 hr.)
- Walk through analysis for each of the above. 5. (1 hr.)
- Show issues of each of the analysis types,
- 7. Review solder fatigue differences for different solders. (1/2 hr.)
- Review any additional industry needs specific to student's industries and
- 9. Lab Time- Students to work on project – can Show how to remove Heat in a flexible board. bring one or work on one provided. (1 ½ hr.)

Instructor:

electronic packaging, testing, and analysis (BS Engineering - Thermal and Materials and MS -Systems Engineering and program management. Tina worked for aerospace companies (ITT, TRW, Perkin Elmer, Goodrich and Aerojet), NASA (Marshall Space Flight Center), automotive (both Ford and Chrysler), military black boxes (Singer Librascope, Army, Navy and Air Force modules) as well as high end medical and commercial (Spectracom, MKS, Kodak, etc.). She has run and created testing labs, procedures, designs, fixes for designs, and the first BGA used in high temperature environments. Tina has R&D experience, proposal experiences, and program management experience in all the above industries. She has 21 US patents — all in electronics packaging, materials, and thermal. . Her experience has included all levels of

parts reliability for systems ranging from 6-month Tina Barcley has over 30 years of experience in to 10-year reliabilities. She is a frequent speaker at industry-specific conferences like IMAPS (International Microelectronics and Packaging Society) and ASE (Automotive Society of Engineers) and is on the IPC (IPC - Association Connecting Electronics Industries) Specification Review Panel.

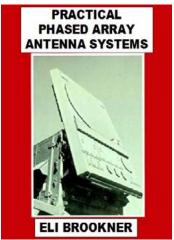
> Decision (Run/Cancel) Date for this Courses is Wednesday, March 16, 2016

Payment received by March 14

IEEE Members \$235 Non-members \$260

Payment received after March 14

IEEE Members \$260 Non-members \$285


To Register, http://ieeeboston.org/event/flexible-electronics-spring-2016

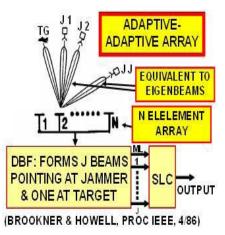
Phased - Array and Adaptive-Array Fundamentals and their Recent Advances

Time & Date: 6 - 9PM; Mondays, March 14, 21, 28, April, 4, 25, May 9, 16, 23, June 6, 13

Location: MITRE Corporation, 202 Burlington Road, Bedford, MA (tentative)

Speaker: Dr. Eli Brookner, Raytheon Company (Retired)

All Attendees of the class will receive a trial license of MATLAB and Phased Array System Toolbox from MathWorks in addition to a set of examples which help demonstrate the key radar concepts covered in the course material.


Text: "Practical Phased Array Antenna Systems", Dr. Eli Brookner, Editor, Artech House, 1991 Hardcover, 258 pages, List Price \$179, Hardcover, 258 pages. Covers array fundamentals: phase and time-delay steering; grating lobes for 1- and 2-dimensional arrays; effects of errors and failures on gain, sidelobes and angle accuracy; array weighting, thinning, blindness, mutual coupling, elements, phase-shifters and feeds; limited field of view (LFOV) arrays; SPY-1; example design.

This course is based on the book entitled Practical ing, Monopulse, Duplexing, Array Thinning, Em-Phased Array Antenna Systems by Dr. Eli Brookner. The book covers array basics and fundamentals which do not change with time. The course, the book and the notes will provide an ideal introduction to the principles of phased array antenna design and adaptive arrays. The course material and notes cover in addition recent developments in phased arrays updated to 2016.

With the explicitly tutorial approach the course and book offers a concise, introductory-level survey of the fundamentals without dwelling on extensive mathematical derivations or abstruse theory. Instead a physical feel will be given. The book provides extensive curves, tables and illustrative examples.

Covered in easy terms will be sidelobe cancellation, full adaptive array processing without suffering its computation complexity (through the use of adaptive-adaptive array processing also called beam-space processing and eigenbeam processing). Finally, Space-Time Adaptive Array (STAP) for airborne platforms will be explained and related to the displaced phase center antenna (DPCA).

This course is intended for the engineer or scientist not familiar with phased-array antennas as well as the antenna specialist who wants to learn about other aspects of phased-array antenna systems. The major emphasis will be on the system aspects of phased-array systems.

Lecture #1. Monday March 14; Phased Fundamen-Arrav tals: **Fundamental** Principles of Electronically Scanned Array (ESA) explained with tube CO-BRA DANE used as example. Covered will be: Near and Far Field Definitions.

Phased Steering, Switched-Line Phase Steering; Time Delay Steering, Subarraying, Array Weightbedded Element, dual polarized circular wavequide element, advantage of triangular lattice over square lattice, Tour of COBRA DANE (6 stories high) via color slides.

PATRIOT UPGRADES

- 2012: \$400 M UPGRADE MADE IT 2012 STATE-OF-THE-ART: **US ARMY FIELDING TO 2048*** 2015: GaN AESA; 360° COV.**
- >200 BUILT
- 13 NATIONS
- 5000 EL PER/FACE
- C-BAND

(*FEB. 19, 2015/PRNEWSWIR1520E) MICROWAVE&RF, AUG 2015, P. 24)

Lecture #2. Monday March 21; **Linear Array Fun**damentals: Conditions for no grating lobes: beamwidth vs scan angle; sine space; Array Factor; sidelobe level vs antenna beamwidth; directivity; antenna efficiency

factors; array weightings; array frequency scanning; array bandwith.

TIGHTLY COUPLED DIPOLE ARRAY (TCDA)

- BANDWIDTH: 1:20
- THICKNESS: λ/40 AT LOWEST FREQ.
- DUAL POLARIZTION
- COLOCATED PHASE CENTERS
- GOOD POARIZATION IN DIAGONAL PLANE
- WAIM STRUCTURE

RAYTHEON TECHNOLOGY TODAY, 2014, ISSUE 1)

thinning system issues.

day March 28; Planar Arrays: Array Factor; array sepasine-space rability; (sinα-sinß space, Tspace); grating lobes location for triangular and rectangular lattice; directivity; very useful bell curve approximation; array

Lecture #3. Mon-

AIR & MISSILE DEFENSE RADAR (AMDR)

- S-BAND: AIR & MISSILE DEFENSE
- X-BAND: HORIZON SEARCH
- ADAPTIVE DIGITAL BEAM FORMING
- 30X > TARGETS THAN SPY-1D(V)
- 30X > SENSITIVE THAN SPY-1D(V)
- RADAR MODULAR ASSEMBLIES (RAMs) ARE BUIDING BLOCKS
- 4 TYPES OF LRUS PER RAM
- LRU REPLACED < 6 MIN
- GaN 34% < \$ THAN GaAs
- GaN HAS 108 HR MTBF
- COTS x86 PROCESSOR
- SCALABLE PICTURE COURTESY RAYTHEON

Lecture #4. Monday April 4; Array **Errors:** Effects of element phase and amplitude element errors and element failures: simple physical derivation of error effects; paired echo theory; subarray errors: quantization errors; examples.

ments: Waveguide; dipole; slotted waveguide; microstrip patch; stacked patch; notch (wideband); spiral; matching (wide-angle); waveguide simulator; practical limitations, mutual coupling and array blindness; scattering matrix; design procedure; , polarization miss-match loss.

Lecture #6. Monday May 9; Active Phased Arrays: 2nd generation solid state hybrid active electronically scanned array (AESAs) covered using PAVE PAWS as example, T/R Module Introduced, Cross Bent Dipole Element, Mutual Coupling, Array Blindness, Tour of PAVE PAWS (6 stories) via color slides. 3rd Generation AESAs: THAAD, SPY-3, IRIDIUM, F-15 APQ-63(V)2, APG-79, XBR, AMDR and upgraded Patriot GaAs and GaN microwave integrated circuits (Monolithic Microwave Integrated Circuit, MMIC).

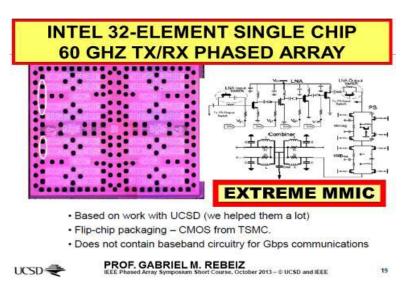
CJR TEAM CELEBRATE A SUCCESSFUL FIRST LIVE-LAUNCH

Lecture #7. Monday May 16; Array Feeds: Corpo-Reactive (lossless) and matched (Wilkinson); even/ odd node analysis. Serial; Ladder; Lopez; Blass; Radial, Butler matrix; microstrip/stripline;

Rotman Lens; SLQ-32; PATRIOT space-fed array; reflectarray. System Considerations: sequential detection, beam shape loss; receiver and A/D dynamic range; polarization miss-match loss; array noise figure and system temperature taking into account array mismatch. Phase Shifters: Diode switchedline, hybrid-coupled, loaded-line; ferrite phaseshifters: non-reciprocal latching; diode vs ferrite; MEMS (Micro-Electro-Mechanical Systems) and its potential for a low cost ESA.

Lecture #8. Monday May 23; Limited Scan (Limited Field of View [LFOV]) Arrays: Explained using simple high school optics for TPS-25, 1st Electronically Scanned Array (ESA) put in production. Fun-

phase shifters needed for a specified scan angle. Lecture #5. Monday April 25; Radiating Ele- Method for realizing this minimum using overlapped array antenna elements as with HIPSAF lens array system and Microwave Landing System (MLS); reflector; randomized oversized elements; use of sum and difference patterns; use of spatial filters to reduce grating lobes and sidelobes. Hemispherical Coverage Dome Antenna.


X-BAND 25K ELEMENT AESA AN/TPY-2

8 DELIVERED, 3 MORE ON ORDER.

#9. Lecture Monday June Phased Ar-6: **Amazing** ray Advances and **Breakthroughs** Part 1: Systems: Patriot now has GaN active electronically scanned array (AESA) providing 360o coverage, now a 2015 stateof-the-art AESA

rate and space fed; radar system; S/X-band AMDR provides 30 times the sensitivity and number of tracks as SPY-1D(V); JLENS aerostat radar system now deployed over Washington DC; 3, 4, 6 faced "Aegis" radar systems developed by China, Japan, Australia, Netherlands, USA; Low Cost, Low Power Extreme MMIC (Moore's law at Microwave and mm-waves): 4 T/R modules on single chip at X-band costing ~\$10 per T/R module; Intel single chip 32-Element 60 GHz Tx/Rx Phased Array, full phased array on wafer at 110 GHz; on-chip built-in-self-test (BIST), will be used in the internet-of-things and in cell phones which by 2020 is expected to number 50 billion, expect such single chip arrays to cost only few dollars in future; All the RF circuitry for mm-wave automobile radars at 25 GHz and 77 GHz are being put on a chip with some believing that such arrays and radars will soon be produced for just a few dollars; Valeo Raytheon (now Valeo Radar) developed low cost, \$100s, car 25 GHz 7 beam phased array radar; about 2 million sold already, more than all the radars ever built up to a very few years ago. Digital Beam Forming (DBF): Israel, Thales and Australia AESAs have under development array with an damental Theorem specifying minimum number of A/D for every element channel; Raytheon developing mixer-less direct RF A/D having >400 MHz instantaneous bandwidth, reconfigurable between S and X-band; Radio Astronomers looking at using arrays with DBF. Materials: GaN can now put 5X to 10X the power of GaAs in same footprint, 38% less costly, 100 million hr MTBF, Raytheon invested \$150 million to develop GaN; SiGe for backend, GaN for front end of T/R module. MIMO (Multiple Input Multiple Output): Where it makes sense; contrary to what is claimed MIMO array radars do not provide 1, 2 or 3 orders of magnitude better resolution and accuracy than conventional array radars; MIMO does not provide better barrage-noise-jammer, repeater-jammer or hot-clutter rejection than conventional array radars; contrary to claims MIMO

should not provide better minimum detectable velocity for airborne radars.

Sidelobe Cancellers (SLC): The simple single-loop, feed-forward canceller is introduced in easy terms. This is followed by a discussion of the simple single-loop feedback canceller with and without hard limiting. The normalized feedback SLC will also be covered. Presented will be their performance; transient response and cancellation ratio. Next the multiple-loop SLC (MSLC) will be covered. Applied to the MSLC will be the Gram-Schmidt, Givens and Householder orthonormal transformation methods. Systolic array implementations will be given.

Lecture #10. Monday June 13; Fully Adaptive Arrays: The optimum weight for a fully adaptive array is developed using a very simple deriva-

tion. Methods for calculating this optimum weight are given using the Sample Matrix Inversion (SMI) algorithm, the Applebaum-Howells adaptive feedback loop method, a recursive method, and Gram-Schmidt, Givens and Householder orthonormal transformations developed for the tracking problem and for the MSLC. The use of eigenvector beams and a whitening filter will also be developed. It will be shown how the latter reduces the transient response. Methods for obtaining the benefits of a fully adaptive array without its high computation and large transient time disadvantages are given. These are the adaptive-adaptive array processing procedures, the use of eigenbeam space, and the method of finding the largest eigenvalues and in turn their eigenbeams. The STAP algorithm will be introduced.

Phased Array Amazing Advances and Breakthroughs -- Part 2: Metamaterials: Material custom made (not found in nature): using 20 and 30 GHz metamaterial electronically steered antennas about the size of a laptop developed for transmission to satellites and back was demonstrated December 2013, goal is \$1K per antenna, remains to prove low cost and reliability, how this antenna works explained for first time; 2-20GHz stealthing by absorption simulated using <1 mm coating; target made invisible over 50% bandwidth at L-band; Focus 6X beyond diffraction limit at 0.38 µm; 40X

diffraction limit, λ /80, at 375 MHz; In cell phones provides antennas 5X smaller (1/10th λ) having 700 MHz-2.7 GHz bandwidth; The Army Research Laboratory in Adelphi MD has funded the develop-

antenna having a λ/20 thickness; Provides isolation between antennas with 2.5 cm separation equivalent to 1 m separation; used for phased array WAIM; n-doped graphene has negative index of refraction, first such material found in nature; Digital Processing and Moore's Law: Not dead yet; Slowed down but has much more to go; Expect increase in transistors density by about a factor of ~50 in the next 30 years and reduction in signal processing power consumption by factor of ~75; and then there is graphene which has potential for terahertz transistor clock speeds, manufacture on CMOS demonstrated, could allow Moore's law to march forward using present day manufacturing techniques; there is also spintronics which could revolutionize the computer architecture away from the John von Neumann model; and there is finally doing computation the way the brain efficiently and amazingly does perhaps by using synaptic transistors and/or memristors, remember the brain only weighs about 2-3 pounds and uses only ~20 W, we have a long way to go; Low Cost Packaging: Raytheon funding development of low cost flat panel X-band AESA using COTS type printed circuit boards (PCBs); Rockwell Collins doing it for airborne AESA; Lincoln-Lab./MA-COM developing low cost S-band flat panel array using PCBs, overlapped subarrays and a T/R switch instead of a circulator; SAR/ISAR: Principal Components of matrix formed from prominent scatterers track history used to determine target unknown motion and thus compensate for it to provide focused ISAR image. Technology and Algorithms: A dual polarized, low profile, $(\lambda/40)$, wideband (1:20) antenna can be built using tightly coupled dipole antennas (TCDA); Lincoln Lab increases spurious free dynamic range of receiver plus A/D by 40 dB; MEMS: reliability reaches 300 billion cycles without failure; Has potential to reduce the T/R module count in an array by a factor of 2 to 4; Can provide microwave filters 200 MHz wide tun-

ment of a low profile metamaterial 250-505 MHZ able from 8-12 GHz; MEMS Piezoelectric Material = piezoMEMS: Enables flying insect robots; Printed Electronics: Low cost 1.6 GHz (goal 2.4 GHz) diodes printed with Si and NbSi2 particles; Electrical and Optical Signals on Same Chip: IR beams could be used for transporting on computer chips digital information at the speed of light; COSMOS: DARPA revolutionary MMIC program: Allows integration of III-V, CMOS and opto-electronics on one chip without bonded wires leading to higher performance, lower power, smaller size, components; Graphene and Carbon Nanotube (CNT): potential also for non-volatile memory, flexible displays and camouflage clothing, self-cooling, IBM producing 200 mm wafers with RF devices; Superconductivity: We may still achieve superconductivity at room temperature; Superconductivity recently obtained for first time with iron compounds; Biodegradable Array of Transistors or LEDs: Imbedded for detecting cancer or low glucose; can then dispense chemotherapy or insulin; Quantum Radar: See stealth targets; New polarizations: OAMs, (Orbital Angular Momentum) unlimited data rate over finite band using new polarizations?? Bio: Biodegradable array of transistors or LEDs for detecting cancer or low glucose, can then dispense chemotherapy or insulin; Can now grow functioning non-rejecting kidney and heart for rats.

> Decision (Run/Cancel) Date for this Courses is Wednesday, March 7, 2016

Payment received by March 3

IEEE Members \$300 Non-members \$340

Payment received after March 3

IEEE Members \$340 \$370 Non-members

To Register, http://ieeeboston.org/event/phased-array-and-adaptive-array-fundamentals-andtheir-recent-advances-spring-2016

Software Development for Medical Device Manufacturers - An intensive two-day course

Time & Date: 8:30AM - 4:30PM; Wednesday & Thursday, March 30 & 31, 2016

Location: Crowne Plaza Hotel, 15 Middlesex Canal Park Road, Woburn, MA

Speaker: Steven Rakitin, Quality Software Consulting

SUMMARY:

Developing software in compliance with FDA, EU regulations and international standards is challenging. This two-day intensive course provides practical guidance and suggestions for developing software that complies with applicable FDA and EU regulations, guidance documents and international standards such as IEC 62304 and ISO 14971. The focus of this course is interpreting Design Controls for software. Each section of the Design Controls regulation (820.30) is discussed from the software perspective. Corresponding requirements from IEC 62304 are woven into the flow.

In-depth discussion of critical topics such as Requirements, Software Verification & Validation, Risk Management and Fault Tree Analysis are included. In addition, techniques for validating software development tools and software used in Manufacturing and Quality Systems are also discussed. Interactive group exercises are included to facilitate discussion and learning.

WHO SHOULD ATTEND

Software and firmware engineers, software managers, RA/QA staff, validation engineers, and project managers. Anyone interested in learning how to develop medical device software in compliance with regulations, standards and guidance documents.

COURSE OUTLINE

Introduction

- Medical Device Definitions FDA and EU
- Regulatory Roadmap and FDA/EU Device
 Classification Schemes
- FDA Regulations and Guidance Documents for Software
- Standards ISO 13485, IEC 62304, ISO 14971, EN-14971, IEC 60601, and IEC 62366-1
 - All Software is Defective

Interpreting Design Controls for Software

- Software Development Models
- Design and Development Planning
- Design Inputs
 - About Requirements...
 - Requirements Exercise
- Design Outputs
- Design Reviews
- Design Verification
 - Software Verification Techniques
- Design Validation
 - Software Validation Process
 - Validation Exercise
- Design Transfer
- Design Changes
- Design History File

Validation of...

- Software Tools used to develop Medical

Device Software

- Software used in Manufacturing
- Software used in Quality Systems

Risk Management

- Standards and Regulations
- Terms and Concepts
- Risk Management Process
- Risk Management Tools and Techniques
 - Fault Tree Exercise
- Data Collection and Analysis
- Documentation Requirements
- Summary
- Comprehensive reference materials included

He received a BSEE from Northeastern University and an MSCS from Rensselaer Polytechnic Institute. He earned certifications from the American Society for Quality (ASQ) as a Software Quality Engineer (CSQE) and Quality Auditor (CQA). He is a Life Senior member of IEEE and a member of MassMEDIC.

He is on the Editorial Review Board for the ASQ Journal Software Quality Professional.

As President of Software Quality Consulting Inc., he helps medical device companies comply with FDA regulations, guidance documents, and international standards in an efficient and cost-effective manner.

Speaker Bio:

Steven R. Rakitin has over 40 years experience as a software engineer and software quality manager. He helped write the first IEEE Software Engineering Standard (IEEE-STD-730 Standard for Software Quality Assurance Plans) as well as the current revision IEEE 730-2014. He is also a member of the working group writing IEEE Standard 1012 (System Verification & Validation). He has written several papers on medical software risk management as well as a book titled: Software Verification & Validation for Practitioners and Managers.

Decision (Run/Cancel) Date for this Courses is Monday, March 21, 2016

Payment received by March 3

IEEE Members \$465 Non-members \$495

Payment received after March 3

IEEE Members \$495 Non-members \$545

To Register, http://ieeeboston.org/event/software-development-for-medical-devicemanufacturers-spring-2016

Antennas and Propagation for Wireless Communications

Time & Date: 6:30 - 9PM; Tuesdays, March 22, 29, April 12, 19, 26, May 3, 10, 17

Crowne Plaza Hotel, 15 Middlesex Canal Park Road, Woburn, MA Location:

Speaker: Dr. Steven R. Best, MITRE Coprporation

Summary: This course provides participants with comprehensive coverage of a wide variety of antenna and propagation topics. The course provides an understanding of basic antenna property definitions, antenna design fundamentals and considerations, numerous antenna types and RF propagation fundamentals. The course also provides an overview of how antenna properties and propagation characteristics affect communication system performance. Topics covered include fundamental antenna performance properties, antenna specifications and data sheets, basic antenna types, elementary antennas, electrically small antennas, wireless device antennas, medical device antennas, low profile antennas, aperture and reflector antennas, circular polarized antennas, antenna arrays, propagation channel characteristics, antenna diversity and MIMO, and an overview of different antennas used in today's wireless communication systems and markets.

Learning Objectives:

Upon completing the course, the participant will be able to:

- Understand the concepts associated with antenna performance, operation and classification.
- Understand, evaluate and define antenna performance specifications.
- Describe and understand a broad spectrum Part 1: of antenna types.
- Illustrate antenna operating principles with a factual knowledge of antenna theory.

- Understand the basic performance trade-offs associated with antenna design.
- Understand how to design basic antenna elements.
- Understand basic principles associated with the implementation of antenna arrays.
- Understand and describe how antenna performance and the RF propagation environment impact wireless communication system performance.
- Understand the basic types of antennas that are used in today's wireless communications markets.

Target Audience: Anyone working within the field of general RF systems, wireless, cellular and microwave systems will benefit from this comprehensive coverage of antenna properties and design. The course is well suited for design engineers and program managers who require an understanding of antenna principles and design concepts. Basic mathematical and computing skills are a prerequisite for this course. An electrical engineering background or equivalent practical experience is recommended but not required.

Outline:

Basic RF Concepts

 Review of fundamental RF Concepts
 Basic design and performance requirements of a wireless

communication system

Basic Antenna Concepts

• Definitions of basic antenna properties: impedance, VSWR, bandwidth, directivity, gain, radiation patterns, polarization, etc.

Types of Antennas

• Resonant antennas • Traveling wave antennas • Frequency Independent antennas • Aperture antennas • Phased arrays • Electrically small antennas • Circularly polarized antennas

Classification of Antenna Types

• By frequency • By size • By directivity

Fundamental Antenna Elements

• The monopole • The dipole • The loop • The folded dipole • The slot

Microstrip Antennas

• Element types • Microstrip element design • Design trade-offs • Designing and 802.11 microstrip patch

Baluns

Ground Plane Considerations

Vertically polarized antennas • horizontally polarized antennas • The impact of the surrounding environment on antenna performance

Part 2:

Circularly Polarized Antennas

Achieving circular polarization
 The helix antenna
 The crossed dipole antenna
 The microstrip patch
 The quadrifilar helix

Aperture Antennas

• Aperture design concepts • The horn antenna • The reflector antenna • The corner reflector Im-

pedance Matching

Impedance matching networks

Broadband Antennas

- Monopole configurations Feed considerations
- Dipole configurations Bandwidth improvement techniques

Frequency Independent Antennas

The log-periodic antenna
 The spiral antenna
 Electrically Small Antennas

Impedance, bandwidth and quality factor of antennas
 Defining electrically small
 Fundamental

performance limitations • The small dipole • The small loop • Design and Optimization of small antennas

Part 3:

Antenna Arrays

Fundamental array theory • Types of antenna arrays • Feed network design considerations • Beam steering and shaping concepts • Performance trade-offs • Microstrip patch arrays • Dipole element arrays

Friis Equation and Link Budget

 The communication link • Understanding and calculating path loss • Receiver Sensitivity and antenna noise figure • Link budget calculations

Receiving Properties of Antenna

 How does an antenna capture power • Aperture area and efficiency • Coupling between antennas

Fractal Antennas

Fractal antenna types
 Performance properties of fractal antennas

RFID Antennas

 RFID system basics • Performance properties of RFID antennas

Ultra Wideband (UWB) Antennas

Time domain considerations in antenna design •
 Antenna performance requirements in UWB systems

Low Profile Antennas

The inverted L and inverted F antennas
 The planar inverted F antenna (PIFA)

Device Integrated Antennas

Antennas commonly used in wireless device applications

Part 4:

Propagation Channel Considerations

RF path loss • Reflection, multipath and fading •
 Noise and interference • Polarization distortion •
 Diversity implementation • MIMO

Types of Antennas used in Communications Systems

Wireless base station antennas
 Wireless handset and portable device antennas
 GPS antennas
 HF, UHF and VHF communication antennas
 Earth station and satellite communication antennas

Numerical Modeling of Antennas

Software packages • Comparison with measurements

Antenna Design and Simulation Examples Using Commercial Antenna Design Software

Speaker Bio: Steven R. Best is a Senior Principal Sensor Systems Engineer with the MITRE Corporation in Bedford, MA. He received the B.Sc. Eng and the Ph.D. degrees in Electrical Engineering in 1983 and 1988, respectively, from the University of New Brunswick in Canada. Dr. Best has over 28 years of experience in business management and antenna design engineering in both military and commercial markets. Prior to joining MITRE, Dr. Best was with the Air Force Research Laboratory (AFRL) at Hanscom AFB, where his research interests included electrically small antennas, wideband radiating elements, conformal antennas, antenna arrays and communications antennas. Prior to joining AFRL, he was President of Cushcraft Corporation in Manchester, NH from 1997 to 2002. He was Director of Engineering at Cushcraft from 1996 to 1997. Prior to joining Cushcraft, he was co-founder and Vice President and General Manager of Parisi Antenna Systems from 1993 through 1996. He was Vice President and General Manager of D&M/ Chu Technology, Inc. (formerly Chu Associates) from 1990 - 1993. He joined Chu Associates as a Senior Electrical Engineer in 1987.

Dr. Best is the author or co-author of 3 book chapters and over 100 papers in various journal, conference and industry publications. He frequently presents a three-day short course for the wireless industry titled "Antennas and Propagation for Wireless Communication", he is the author of a CD-ROM series on antenna theory and design, and he has presented several Webinars on antenna topics. He has also authored an IEEE Expert Now module on electrically small antennas. Dr. Best is a former Distinguished Lecturer for IEEE Antennas and Propagation Society (AP-S), a former member of the AP-S AdCom, a former Associate Editor for the IEEE Transactions on Antennas and Propagation, and Senior Past Chair of the IEEE Boston Section. He is also a former Editor-in-Chief for AP-S Electronic Communications. Dr Best is a Fellow of the IEEE and a Past-President of the IEEE Antennas and Propagation Society.

Decision (Run/Cancel) Date for this Courses is Friday, March 11, 2016

Payment received by March 8

IEEE Members \$425 Non-members \$455

Payment received after March 8

IEEE Members \$455 Non-members \$475

To Register, http://ieeeboston.org/event/antennas-and-propagation-for-wireless-communications