Radar Basics and Recent Amazing Advances

Register Now

Fall 2016 Course

Dates: Mondays, October 24, 31, November 7, 14, 21, 28, December 5, 12, 19 and January 9, 2017
(If needed, Snow/make up days Jan. 23, 30, Feb. 6)

Time: 6:00PM – 9:00PM

Decision date: Monday, October 17, 2016

Early Registration Date deadline: October 12, 2016

Before Early Registration Date:
Members $300
Non-members $340

After Early Registration Date:
Members $340
Non-members $370

WHERE: MITRE Corporation
202 Burlington Road Bedford, MA
USA (Tentative)

Phone 781-245-5405
email sec.boston@ieee.org
Fax 781-245-5406

If paying by check, the check must be received before the appropriate dates for Early Registration and Decision Dates.

Make Checks payable and send to:
IEEE Boston Section
One Centre Street, Suite 203
Wakefield, MA 01880

Speaker: Dr. Eli Brookner (Raytheon Retired)

Course Overview:

Radar Basics and Recent Amazing Advances

All Attendees of the class will receive a trial license of MATLAB, Phased Array System Toolbox, and Antenna Toolbox from MathWorks in addition to a set of examples which help demonstrate the key radar concepts covered in the course material.

The following book plus over ten paper reprints are provided FREE with your registration:

1. “Aspects of Modern Radar”, Dr. Eli Brookner (Editor), Artech House, Hardcover, 432 pages, 1988, List price: $159. The 1st chapter gives the best easy to read introduction to radar. It covers all aspects of radar: transmitters, receiver, antennas, signal processing, tracking, clutter derivation of radar equation in easy terms and definition of dB. The 2nd chapter gives detailed descriptions of different radar systems like: Cobra Dane, Pave Paws, BMEWS, Series 320 3D radar, OTH radars and dome antenna. The book has a catalog giving the detailed parameters for over 200 radars from around the world. The remaining chapters cover AEGIS SPY-1, Hybrid and MMIC circuits, ultra low sidelobe antennas (ULSA), mmw, radar cross section and Doppler weather radars. The material in the book is easy to access and as a result the text serves as a handy reference book.

Radar course pic 1800 vugraphs plus over 15 paper reprints by Dr. Brookner.

For the beginner, basics such as the radar equation, MTI (Moving Target Indicator), pulse doppler processing, antenna-scanning techniques, pulse compression, CFAR, RAC and SAW devices, dome antenna, CCDs, BBDs, SAW, SAW monolithic convolvers, microstrip antennas, ultra-low antenna sidelobes (<-40 dB), stacked beam and phased array systems, (1-D, 2-D, Limited Field of View [LFOV]), Moving Target Detection (MTD) are all explained in simple terms. For both the novice and experienced covered are tracking, prediction and smoothing in simple terms (mystery taken out of GH, GHK and Kalman filters); the latest developments and future trend in solid state, tube and digital processing technologies; synthetic aperture radar (SAR); Displaced Phase Center Antenna (DPCA); Space-Time Adaptive Processing (STAP) ; digital beam forming (DBF); Adaptive-Adaptive Array Processing for jammer suppression with orders of magnitude reduction in computation; RECENT AMAZING RADAR BREAKTHROUGHS. radar course pic 4

Lecture 1, Oct. 24
FUNDAMENTALS OF Radar: Part 1: Very brief history of radar, major achievements since WWII: PHASED ARRAYS: Principles explained with COBRA DANE used as example. Near and Far Field Defined, Phased Steering, Time Delay Steering, Subarraying, Array Weighting, Monopulse, Duplexing, Array Thinning, embedded element, COBRA DANE slide tour (6 stories building). Radar equation derived.

radar course pic 6

Lecture 2, Oct. 31
FUNDAMENTALS OF Radar: Part 2: FREQUENCY TRADEOFFS: Search vs Track, Range and Doppler Ambiguities, Detection in Clutter. Blind Velocity region, range eclipsing, Environmental Factors, Dependence of clutter model on grazing angle and size radar resolution cell discussed, Weibull clutter: Polarization Choice, Detection of Low Flying Low Cross-Section Targets, Antenna Pattern Lobing in Elevation due to multipath, Ground Multipath Elevation Angle Error Problem and ways to cope with it, e.g., use of an even difference pattern Off-Axis Monopulse, Complex Monopulse,Two Frequency Radar Systems: Marconi L- and S-band S631, Signaal/Thales (Holland),Flycatcher X and Ka System; Tube and Solid State OTH. Radars

Lecture 3, Nov. 7
FUNDAMENTALS of Radar: Part 3: PROPAGATION: standard, superrefraction, subrefraction, surface-based ducts, evaporation ducts. Determination of radar coverage using new AREPS program. ANTENNA SCANNING SYSTEMS: Fixed Beam System: Wake Measurement Radar; 2-D Radars, 3-D Radars: Stacked Beam: Marconi Martello, Smart-L, SMARTELLO, ARSR-4; 1-D Frequency Scanning: ITT Series 320; 1-D Phased Scanning: TPS-59, GE-592, RAT-31DL; Phased-Frequency Scanners: Raytheon Fire Finder and Plessey AR320; Limited and Hemispherical Scanning (Dome Antenna) related and explained in simple terms.

Lecture 4, Nov. 14
FUNDAMENTALS of Radar: Part 4: ULTRA LOW ANTENNA SIDELOBES (40 dB down or more). MOVING TARGET INDICATORS (MTI): Two-Pulse Canceller, Pulse Doppler Processing; MOVING TARGET DETECTOR (MTD); Optimum Clutter Canceller, STAP, AMTI, DPCA.

radar course pic 5

Lecture 5, Nov. 21
SIGNAL PROCESSING: Part 1: What is PULSE COMPRESSION? Matched Filters; Chirp Waveform Defined; ANALOG PROCESSING: Surface Acoustic Wave (SAW) Devices: Reflective Array Compressor (RAC), Delay Lines, Bandpass Filters, Oscillators, Resonators; IMCON Devices; Analog Programmable Monolithic SAW Convolver; BBD/CCD. What are they?

radar course pic 2

Lecture 6, Nov. 28
SIGNAL PROCESSING: Part 2: DIGITAL PROCESSING: Fast Fourier Transform (FFT); Butterfly, Pipeline and In-Place Computation explained in simple terms; Maximum Entropy Method (MEM) Spectral Estimate; State-of-the-art of A/Ds, FPGAs and Memory; Signal Processor Architectures: Pipeline FFT, Distributed, Systolic; Digital Beam Forming (DBF). Future Trends.

Lecture 7, Dec. 5
SYNTHETIC APERTURE RADAR (SAR): Strip and Spotlight SAR explained in simple terms.
TUBES: Basics given of Magnetron, Cross Field Amplifiers, Klystrons, Traveling Wave Tubes, Gyro Tubes.

TREND TOWARD SOLID STATE PHASED-ARRAY TRANSMITTERS: Discrete All Solid State PAVE PAWS and BMEWS radars; advantages over tube radars; MMIC (Monolithic Microwave Integrated Circuitry; integrated circuitry applied to microwaves components): THAAD, SPY-3, IRIDIUM, XBR, JLENS. Solid State ‘Bottle’ Transmitters: ASR -11/DASR, ASR-23SS, ASDE-X. Extreme MMIC.

radar course pic 5

Lecture 8, Dec. 12
Breakthroughs and Trends in Phased-Arrays and Radars
Systems: 3, 4, 6 face “Aegis” systems developed by China, Japan, Australia, Netherlands, USA; Patriot now has GaN AESA providing 360o coverage without having to rotate; S/X-band AMDR provides 30 times the sensitivity and number of tracks as SPY-1D(V). Low Cost Packaging: Raytheon funding development of low cost flat panel X-band array using COTS type printed circuit boards (PCBs); Lincoln-Lab./MA-COM developing low cost S-band flat panel array using PCBs, overlapped subarrays and a T/R switch instead of a circulator; Extreme MMIC: 4 T/R modules on single chip at X-band costing ~$10 per T/R module ; full phased array on wafer at 110 GHz; on-chip built-in-self-test (BIST); Digital Beam Forming (DBF): Israel, Thales and Australia AESAs have an A/D for every element channel; Raytheon developing mixer-less direct RF A/D having >400 MHz instantaneous bandwidth, reconfigurable between S and X-band; Lincoln Lab increases spurious free dynamic range of receiver plus A/D by 40 dB; Radio Astronomers looking at using arrays with DBF. Materials: GaN can now put 5X to 10X the power of GaAs in same footprint, 38% less costly, 100 million hr MTBF; SiGe for backend, GaN for front end of T/R module. Metamaterials: Material custom man made (not found in nature): electronically steered antenna at 20 and 30 GHz demonstrated (with goal of $1K per antenna) remains to prove low cost and reliability); 2-20GHz stealthing by absorption simulated using <1 mm coating; target made invisible over 50% bandwidth at L-band; Focus 6X beyond diffraction limit at 0.38 μm; 40X diffraction limit, λ/80, at 375 MHz; In cell phones provides antennas 5X smaller (1/10th λ) having 700 MHz-2.7 GHz bandwidth; Provides isolation between antennas having 2.5 cm separation equivalent to 1m separation; used for phased array WAIM; n-doped graphene has negative index of refraction, first such material found in nature. Very Low Cost Systems: Valeo Raytheon (now Valeo Radar) developed low cost, $100s, car 25 GHz 7 beam phased array radar; about 2 million sold already, more than all the radars ever built up to a very few years ago; Commercial ultra low cost 77 GHz Roach radar on 72mm2 chip, uses >8 bits 1 GS/s A/D and 16 element array; Low cost 240GHz 4.2×3.2×0.15 cm3 5 gm radar for bird inspired robots and crawler robots, Frequency scans 2ox8o beam ±25o. SAR/ISAR: Principal Components of matrix formed from prominent scatterers track history used to determine target unknown motion and thus compensate for it to provide focused ISAR image. Technology and Algorithms: Lincoln Lab increases spurious free dynamic range of receiver plus A/D by 40 dB; MEMS: reliability reaches 300 billion cycles without failure; Has potential to reduce the T/R module count in an array by a factor of 2 to 4; Provides microwave filters like 200 MHz wide tuneable from 8-12 GHz; MEMS Piezoelectric Material = piezoMEMS: Enables flying insect robots; Printed Electronics: Low cost printing of RF and digital circuits using metal-insulator-metal (MIM) diodes, 2D MoS2 ink and 1.6 diodes GHz (goal 2.4 GHz) made with Si and NbSi2 particles,; Electrical and Optical Signals on Same Chip: Electricity and light can be simultaneously transmitted over a silver nanowire combined with single layer 2D MoS2, could be a step towards transporting on computer chips digital information at the speed of light; COSMOS: DARPA revolutionary program: Allow integration of III-V, CMOS and opto-electronics on one chip without bonded wires leading to higher performance, lower power, smaller size, components; MIMO (Multiple Input Multiple Output): Where it makes sense; contrary to what is claimed MIMO array radars do not provide 1, 2 or 3 orders of magnitude better resolution and accuracy than conventional array radars; MIMO does not provide better barrage-noise-jammer, repeater-jammer or hot-clutter rejection than conventional array radars; should not be better for detecting low velocity targets in airborne STAP radar; Graphene and Carbon Nanotube (CNT): Potential for Terahertz transistor clock speeds, manufacture on CMOS demo’d, could allow Moore’s law to march forward using present day manufacturing techniques; potential for non-volatile memory, flexible displays and camouflage clothing, self-cooling, IBM producing 200 mm wafers with RF devices; Electron spin: For memory; Atomic Memory: 12 iron atoms for 1 bit of memory; could provide hard drive with 100X density; Revolutionary 3-D Micromachining: integrated circuitry for microwave components, like 16 element Ka-band array with Butler beamformer on 13X2 cm2 chip; Superconductivity: We may still achieve superconductivity at room temperature; Superconductivity recently obtained for first time with iron compounds; DARPA UHPC (Ubiquitous High Performance Computing) Program): Goal: Reduce signal processing power consumption by factor of 75; Biodegradable Array of Transistors or LEDs: Imbedded for detecting cancer or low glucose; can then dispense chemotherapy or insulin; Quantum Radar: See stealth targets; New polarizations: OAMs, (Orbital Angular Momentum) unlimited data rate over finite band using new polarizations??

radar course pic 3

Lecture 9, Dec. 19
TRACKING, PREDICTION AND SMOOTHING: Simple Algebra and Physical explanation. Mystery taken out of αβ (GH) Filter; Errors of; Fading Memory; Benedict-Bordner; Example Designs; Stability; Tracking Initiation; αβγ (GHK) Filter; Kalman Filter Explained in simple physical terms; Why Kalman Filter?; Relationship to GH and GHK Filters; Matrix Notation; Simple Derivation.

Lecture 10, Jan. 9
HOW TO LOOK LIKE A GENIUS IN DETECTION WITHOUT REALLY TRYING: Simple procedure for determining detection using Meyer Plots, MATLAB, Excel and MATHCAD is presented. No detailed mathematics used, emphasis on physical understanding of target models (non-fluctuating, Marcum, Swerling, Weinstock, Chi-Square, Rayleigh, Lognormal, Rice and YGIAGAM) and performance results. Also covered are beam shape, CFAR, mismatch losses.

The following is included in your registration:
Textbook …………………………………. $159
Reprints ………………………….. ………$150
Over 800 Vugraphs ………………………$120